بسمآالران الرحم

Mechanics of Materials
MENG 270
Fall 2003
Time: 2 hrs
First Exam

| Name: | Q.2 | Computer No.: | |
| :--- | :--- | :--- | :--- | :--- |
| Q.1 | Q.3 | Q.4 | Total |

Q. 1 [10 points]

The 4-mm-diameter cable BC is made of steel with $\mathrm{E}=200 \mathrm{GPa}$. Knowing that the maximum stress in the cable must not exceed 190 MPa and that the elongation of the cable must not exceed 6 mm , find the maximum load P that can be applied as shown.

Given:

$$
\begin{aligned}
& \mathrm{E}=200 \mathrm{GPa} \\
& \sigma_{\text {all }}=190 \mathrm{MPa} \\
& \delta=6 \mathrm{~mm} \\
& \mathrm{~d}_{\mathrm{BC}}=4 \mathrm{~mm} \\
& \mathrm{P}=?
\end{aligned}
$$

Solution:
Figure shows F.B.D

Consider link AB

$$
\begin{aligned}
& \rightarrow \Sigma \mathrm{F}_{\mathrm{x}}=0 \\
& \quad P_{B X}-P+P_{A X}=0 \\
& P=P_{B X}+P_{A X}---------(1) \\
& \uparrow \Sigma \mathrm{F}_{\mathrm{Y}}=0 \\
& \quad P_{A Y}=P_{B Y}------------(2)
\end{aligned}
$$

$$
\begin{align*}
& \Sigma \mathrm{M}_{\mathrm{D}}=0 \\
& 2.5 P_{B X}=3.5 P_{A X} \\
& P_{A X}=\frac{2.5}{3.5} P_{B X}- \tag{3}
\end{align*}
$$

Initial length of cable BC
$L_{B C}=\sqrt{6^{2}+4^{2}}=7.21 \mathrm{~m}$
$\delta l=\frac{P_{B} L_{B C}}{A_{B C} E_{B C}} \Rightarrow P_{B}=\frac{\delta l A_{B C} E_{B C}}{L_{B C}}$
$A_{B C}=\frac{\pi}{4} d_{B C}^{2}=\frac{\pi}{4} \times\left(4 \times 10^{-3}\right)^{2}=12.6 \times 10^{-6} \mathrm{~m}^{2}$
$\sigma_{\text {all }}=\frac{P_{B}}{A_{B C}} \Rightarrow P_{B}=\sigma_{\text {all }} \times A_{B C}$
$P_{B}=190 \times 10^{6} \times 12.6 \times 10^{-6}=2.3 \mathrm{kN}$
considering allowable deflection we get
$P_{B}=\frac{6 \times 10^{-3} \times 12.6 \times 10^{-6} \times 200 \times 10^{9}}{7.21}=2.091 \mathrm{kN}$
Take smaller value of P_{B}
$\theta=\tan ^{-1} \frac{4}{6}$
$\theta=33.7$
$P_{B X}=P_{B} \sin \theta$
$P_{B x}=1.16 \mathrm{kN}$
substituting value of $P_{B x}$ in equation 3
$P_{A X}=0.82 \mathrm{kN}$
\therefore from equation 1
$P=1.16+0.82$
$P=1.988 \mathrm{kN} \quad$ Answer

Q. 2 [10 points]

A fabric used in an air-inflated structure is subjected to biaxial loading that results in normal stresses $\sigma_{\mathrm{x}}=120 \mathrm{MPa}$ and $\sigma_{\mathrm{z}}=160 \mathrm{MPa}$. Knowing that the properties of fabric can be approximated as $\mathrm{E}=87 \mathrm{GPa}$ and $v=0.34$, determine change in length of (a) side AB , (b) side BC , (c) diagonal AC .

Given:

$$
\begin{aligned}
\sigma_{x} & =120 \mathrm{MPa} \\
\sigma_{z} & =160 \mathrm{MPa} \\
E & =87 \mathrm{GPa} \\
v & =0.34
\end{aligned}
$$

Change in $A B, B C, A C=$??
Solution:
$\varepsilon_{x}=\frac{\sigma_{x}}{E}-\frac{v \sigma_{y}}{E}-\frac{v \sigma_{z}}{E}$
$\varepsilon_{y}=\frac{\sigma_{y}}{E}-\frac{v \sigma_{x}}{E}-\frac{v \sigma_{z}}{E}$
$\varepsilon_{z}=\frac{\sigma_{z}}{E}-\frac{v \sigma_{x}}{E}-\frac{v \sigma_{y}}{E}$
Subsitute the given values in the above equations
$\varepsilon_{x}=\frac{120 \times 10^{6}}{87 \times 10^{9}}-0-\frac{0.34 \times 160 \times 10^{6}}{87 \times 10^{9}}$
$\varepsilon_{x}=0.000754$
$\varepsilon_{y}=0-\frac{0.34 \times 120 \times 10^{6}}{87 \times 10^{9}}-\frac{0.34 \times 160 \times 10^{6}}{87 \times 10^{9}}$
$\varepsilon_{y}=0.001$
$\varepsilon_{z}=\frac{160 \times 10^{6}}{87 \times 10^{9}}-\frac{0.34 \times 120 \times 10^{6}}{87 \times 10^{9}}-0$
$\varepsilon_{z}=0.00137$

$$
\begin{array}{lr}
\varepsilon_{x}=\frac{\delta_{A B}}{L_{A B}} \Rightarrow \delta_{A B}=\varepsilon_{x} \times L_{A B} & \\
\therefore \delta_{A B}=.000754 \times 100 & \\
\delta_{A B}=.0754 \mathrm{~mm} & \\
\delta_{B C}=\varepsilon_{z} \times L_{B C} & \\
\delta_{B C}=0.10275 \mathrm{~mm} & \\
L_{A B}^{\prime}=L_{A B}+\delta_{A B} & \\
L_{A B}=100.0754 & \\
L_{B C}^{\prime}=L_{B C}+\delta_{B c} & \\
L_{B C}^{\prime}=75.10275 & \\
A C=\sqrt{100^{2}+75^{2}} & \\
A C^{\prime}=\sqrt{100.075^{2}+75.10275^{2}} & \\
\delta_{A C}=A C^{\prime}-A C & \\
\delta_{A C}=0.1216 \mathrm{~mm} & \text { Answer }
\end{array}
$$

Q. 3 [10 points]

Knowing that the ultimate strength of the bar shown is 300 MPa , determine the maximum allowable centric axial force P which may applied to the bar with a factor of safety 2.

Given:
$D=60 \mathrm{~mm}$
$d=40 \mathrm{~mm}$
$r=10 \mathrm{~mm}$
$\sigma_{\text {max }}=150 \mathrm{MPa}$
$P_{\text {all }}=$??

Solution:

$$
\begin{aligned}
& \frac{D}{d}=\frac{60}{40}=1.5 \\
& \frac{r}{d}=\frac{10}{40}=0.25 \\
& K=1.61 \quad(\text { from figure }) \\
& K=\frac{\sigma_{\max }}{\sigma_{a v}} \\
& \sigma_{a v}=\frac{\sigma_{\max }}{K}=\frac{150}{1.61}=93.12 \mathrm{MPa} \\
& P_{\text {all }}=\sigma_{a v} \times A \\
& P_{\text {all }}=93.12 \times 40 \times 8=29 \mathrm{kN}
\end{aligned}
$$

For Hole

$$
\begin{aligned}
& \frac{r}{d}=\frac{11.25}{(60-22.5)}=0.3 \\
& K=2.35(\text { fromfigure }) \\
& \sigma_{a v}=\frac{\sigma_{\max }}{K}=\frac{150}{2.35}=63.829 \mathrm{MPa} \\
& P_{\text {all }}=\sigma_{a v} \times A=63.829 \times 8 \times(60-22.5) \\
& P_{\text {all }}=19.148 \mathrm{kN}
\end{aligned}
$$

Q. 4 [10 points]

The two solid shafts and gears shown are used to transmit 12 kW from the motor at A, which rotates at frequency of 20 Hz , to a machine tool at D. Each shaft has diameter of 25 mm , determine the maximum shear stress in each shaft. If the maximum allowable shearing stress for the shaft material is 60 MPa , what is factor of safety of the system?

Given :
$P=12 \mathrm{~kW}$
$f=20 \mathrm{~Hz}$
$d=25 \mathrm{~mm}$
$\tau_{A B}=? ?$
$\tau_{C D}=? ?$
$F . S=$??
Solution:
$P=2 \pi f T$
$T=\frac{P}{2 \pi f}=\frac{12 \times 1000}{2 \pi \times 20}$
$T=95.492 \mathrm{~N}-\mathrm{m}$
$\therefore T_{A B}=95.492 \quad N-m$
$\tau_{A B}=\frac{16 \times T}{\pi d^{3}}$ (for solid shaft $)$
$\tau_{A B}=\frac{16 \times 95.492}{\pi \times\left(25 \times 10^{-3}\right)^{3}}$
$\tau_{A B}=31.12 \mathrm{MPa}$

Force acting on gear C

$$
\begin{aligned}
& F_{C}=\frac{T}{r_{B}} \\
& F_{C}=1273 \quad N
\end{aligned}
$$

Torque on gear C
$T_{C}=F_{C} \times r_{C}=1273 \times 125$
$T_{C}=159125 \quad N-m m$
$\therefore T_{C D}=159.125 \mathrm{~N}-\mathrm{m}$
$\tau_{C D}=\frac{16 T}{\pi d^{3}}$
$\tau_{C D}=51.867 \mathrm{MPa}$
Answer

Maximum shear stress is 51.867 MPa
$F . S=\frac{\tau_{\text {all }}}{\tau_{\text {max }}}$
$F . S=\frac{60}{51.867}$
$F . S=1.15 \quad$ Answer

