Mechanics of Materials	MENG 270	
Fall 2003	Exam 3	Time allowed: 90min

Name.			Computer No.		
Q.1(a)	Q.1 (b)	$Q .2$	$Q .3$	$Q .4$	Total

Problem No. 1 (a) [5Points]

An air vessel is 500 mm average diameter and 10 mm thickness, the length being 2 meters. Find the stresses induced in the material and change in diameter \& length when charged to $10 \mathrm{~N} / \mathrm{mm}^{2}$ internal pressure.
Take $E=200 \mathrm{kN} / \mathrm{mm}^{2}$ and Poisson's ratio is 0.3

Given:

$$
\begin{array}{ll}
d=50 \mathrm{~mm} & t=10 \mathrm{~mm} \\
l=2 \mathrm{~m} & p=10 \mathrm{~N} / \mathrm{mm}^{2} \\
E=200 \mathrm{kN} / \mathrm{mm}^{2} & v=0.3 \\
\delta d=? ? ? & \delta l=? ? ?
\end{array}
$$

Solution:

Stresses in the material

Hoop Stress

$$
\sigma_{1}=\frac{p r}{t}=\frac{10 \times 250}{10}=250 \mathrm{~N} / \mathrm{mm}^{2} \quad \text { Answer }
$$

Longitudinal stress $\quad \sigma_{2}=\frac{p r}{2 t}=\frac{10 \times 250}{2 \times 10}=125 \quad \mathrm{~N} / \mathrm{mm}^{2} \quad$ Answer

Change in the diameter

$\delta d=\varepsilon_{1} d$

$$
\begin{aligned}
\varepsilon_{1} & =\frac{\sigma_{1}}{E}-v \frac{\sigma_{2}}{E} \\
\varepsilon_{1} & =\frac{250}{200 \times 1000}-0.3 \times \frac{125}{200 \times 1000} \\
\varepsilon_{1} & =0.0010625 \\
\delta d=0.531 \mathrm{~mm} & \text { Answer }
\end{aligned}
$$

Change in Length
$\delta l=\varepsilon_{2} l$
$\varepsilon_{2}=\frac{\sigma_{2}}{E}-v \frac{\sigma_{1}}{E}$
$\varepsilon_{2}=\frac{125}{200 \times 1000}-0.3 \times \frac{250}{200 \times 1000}=0.00025$
$\delta l=0.5 \mathrm{~mm}$
Answer

Mechanics of Materials	MENG 270	
Fall 2003	Exam 3	Time allowed: 90min

Name	Computer No.

Problem No 1(b) [5 Points]

A spherical pressure vessel of 900 mm outer diameter is fabricated from steel having ultimate strength of $\sigma_{u}=400 \mathrm{MPa}$, knowing that a factor of safety of 4 is desired and the gauge pressure can reach 3.5 MPa , determine the smallest wall thickness that should be used.

Given:

$$
\begin{array}{ll}
d_{o}=900 \mathrm{~mm} & r_{o}=450 \mathrm{~mm} \\
\sigma_{u}=400 \mathrm{MPa} & p=3.5 \mathrm{MPa} \\
F . S=4 & \\
t=? ? ? &
\end{array}
$$

Solution:

For spherical shell

$$
\begin{aligned}
& \sigma_{1}=\sigma_{2}=\frac{p r}{2 t} \\
& r=r_{o}-t \\
& \sigma_{1}=\frac{p\left(r_{0}-t\right)}{2 t} \\
& \therefore t=\frac{p r_{o}}{2 \sigma_{1}+p} \\
& \sigma_{\text {all }}=\frac{\sigma_{u}}{F \cdot S}=\frac{400}{4}=100 \mathrm{MPa}
\end{aligned}
$$

$$
\therefore t=\frac{3.5 \times 450}{2 \times 100+3.5}
$$

$$
t=7.74 \quad \mathrm{~mm}
$$

```
Mechanics of Materials
Fall }200
Exam 3 Time allowed: 90min
```

Name	Computer No.

Problem No 2 [10 Points]

The state of plane stress occurs in an aluminum member made of an alloy with tensile yield strength of 210 MPa. Determine factor of safety with respect to yield using (a) maximum shearing stress criterion (b) maximum distortion energy criterion

Given:

$$
\begin{aligned}
& \sigma_{x}=96 \mathrm{MPa} \quad \sigma_{y}=-24 \mathrm{MPa} \quad \tau_{x y}=30 \mathrm{MPa} \\
& \sigma_{Y}=210 \mathrm{MPa} \\
& \text { F.S }=\text { ??? Considering; } \\
& \text { (a) Maximum shearing stress criterion } \\
& \text { (b) Maximum distortion energy criterion }
\end{aligned}
$$

Solution:

For plane stress condition the principal stresses are determined by the equation;

$$
\begin{aligned}
& \sigma_{1,2}=\frac{\sigma_{x}+\sigma_{y}}{2} \pm \sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}} \\
& \sigma_{1,2}=\frac{96-24}{2} \pm \sqrt{\left(\frac{96+24}{2}\right)^{2}+30^{2}} \\
& \sigma_{1}=103.1 \mathrm{MPa} \\
& \sigma_{2}=-31.1 \mathrm{MPa}
\end{aligned}
$$

(a) Maximum shear stress theory

According to maximum shear stress criterion for plane stress condition,

$$
\begin{aligned}
& \tau_{\max }=\frac{1}{2}\left|\sigma_{1}-\sigma_{2}\right| \\
& \therefore \tau_{\max }=\frac{1}{2}|103.1-31.1|=67.1 M P a
\end{aligned}
$$

And

$$
\begin{aligned}
& \tau_{\text {all }}=\frac{\sigma_{Y}}{2}=\frac{210}{2}=105 \mathrm{MPa} \\
& \therefore F . S=\frac{105}{67.1}=1.564
\end{aligned}
$$

Answer

(b) Maximum Distortion Energy Theory

According to maximum distortion energy criterion for plane stress condition we have;

$$
\begin{aligned}
& \sigma_{1}^{2}-\sigma_{1} \sigma_{2}+\sigma_{2}^{2}=\left(\frac{\sigma_{Y}}{F . S}\right)^{2} \\
& \therefore(103.1)^{2}-(103.1)(-31.1)+(-31.1)^{2}=\left(\frac{210}{F . S}\right)^{2} \\
& \therefore F . S=1.762
\end{aligned}
$$

Answer

Mechanics of Materials	MENG 270	
Fall 2003	Exam 3	Time allowed: 90min

Name

Computer No.

Problem No 3 [10 Points]

Determine equation of elastic curve for the beam and loading shown in figure. Knowing that $a=1.5 \mathrm{~m}, L=5 \mathrm{~m}$ and $P=150 \mathrm{kN}$, determine (a) the slope at support A and (b) deflection at point C.

Take $E=200$ GPa.

Given:
(a) Elastic curve equation between $A B=$???

Knowing that $a=1.5 \mathrm{~m} \quad L=5 \mathrm{~m} \quad P=150 \mathrm{kN} \quad E=200 \mathrm{GPa}$
find;
(b) Deflection at point C
(c) Slope at support A

Solution:

Free body diagram is shown in Figure 3-a
$\sum M_{B}=0$
$R_{A}=\frac{P b}{L}($ let $L-a=b)$

FIG: 3-a
$R_{B}=\frac{P a}{L}$
Free Body diagram for the section at $x-x$ where $x<a$ is shown in Figure 3-b
$M_{1}=\frac{P b}{L}$ x for $0<x<a$

FIG: 3-b

The differential equation of the deflection curve of bent beam is
$E I \frac{d^{2} y}{d x^{2}}=M$
$\therefore E I \frac{d^{2} y}{d x^{2}}=\frac{P b}{L} x$
The integration of equation (1) gives
$E I \frac{d y}{d x}=E I \theta_{1}=\frac{P b}{L} \frac{x^{2}}{2}+C_{1}$
The integration of equation (2) yields
$E I y_{1}=\frac{P b x^{3}}{6 L}+C_{1} x+C_{2}$
In the region to the right of the force P at the section $x^{\prime}-x$ ' where $a<x<L$, the F.B.D is shown in Figure 3-c ;
The bending moment equation is
$M_{2}=\frac{P b}{L} x-P(x-a)$

FIG: 3-c
$\therefore E I \frac{d^{2} y}{d x^{2}}=\frac{P b}{L} x-P(x-a)$
The integration of equation (4) yields
$E I \frac{d y}{d x}=E I \theta_{2}=\frac{P b x^{2}}{2 L}-\frac{P(x-a)^{2}}{2}+C_{3}$
The integration of equation (5) gives
$E I y_{2}=\frac{P b x^{3}}{6 L}-\frac{P(x-a)^{3}}{6}+C_{3} x+C_{4}$
Apply boundary conditions:
At $x=0, y=0$
\therefore From equation (3) $C_{2}=0$
At $x=a, \theta_{1}=\theta_{2}$
\therefore Comparing equations (2) \& (5) and substituting values of constants of integration we get;
$C_{1}=C_{3}$
At $x=a \quad y_{1}=y_{2}$
Therefore comparing equations (3) \& (6) and substituting values of constants of integration we get,
$\frac{P b a^{3}}{6 L}+C_{1} a=\frac{P b a^{3}}{6 L}+C_{3} a+C_{4}$
Since $C_{1}=C_{3}$, we have $C_{4}=0$
At $x=L, y=0$
Equation (6) gives
$C_{3}=\frac{P b}{6 L}\left(b^{2}-L^{2}\right)$
The values of constants of integration may now be substituted in equations (3)\&(6) to give;
$E I y_{1}=\frac{P b}{6 L}\left[x^{3}-\left(L^{2}-b^{2}\right) x\right]$ for $0<x\langle a$
$E I y_{2}=\frac{P b}{6 L}\left[x^{3}-\left(L^{2}-b^{2}\right) x-\frac{L}{b}(x-a)^{3}\right]$ for $a<x<L$
Equations (11) \& (12) are valid for in the region indicated
Similarly from equations (2), the slope at support A is ,
$\theta_{A}=-\frac{P b\left(L^{2}-b^{2}\right)}{6 E I L}$

Deflection at point C

At point $C, \quad x=a$, equation (11) gives
$y=-\frac{P a^{2} b^{2}}{3 E I L}$
Substituting the given values in equation (14) we get
$y=-\frac{150 \times 1000 \times 1.5^{2} \times 3.5^{2}}{3 \times 200 \times 10^{9} \times 121.1 \times 10^{-6} \times 5}$
$\left(I=121.1 \times 10^{-6} \mathrm{~m}^{4}\right.$ from Appendix C)
$y=-.01138 \mathrm{~m}=-11.38 \mathrm{~mm}$
Answer

Slope at Support A

Substituting the given values in equation (13) we get
$\theta_{A}=\frac{150 \times 1000 \times 3.5 \times\left(5^{2}-3.5^{2}\right)}{6 \times 200 \times 10^{9} \times 121.1 \times 10^{-6} \times 5}=9.21 \times 10^{-3} \mathrm{rad} \square$ Answer

BY SINGUARITY METHOD

Referring to figure 3-c
$M=\frac{P b}{L}\langle x\rangle^{1}-P\langle x-a\rangle^{1}$
$\therefore E I \frac{d^{2} y}{d x^{2}}=\frac{P b}{L}\langle x\rangle^{1}-P\langle x-a\rangle^{1}$
Integrating we have
$E I \frac{d y}{d x}=E I \theta=\frac{P b}{2 L}\langle x\rangle^{2}-\frac{P}{2}\langle x-a\rangle^{2}+C_{1}$
Integrating equation (1) we get
$E I y=\frac{P b}{6 L}\langle x\rangle^{3}-\frac{P}{6}\langle x-a\rangle^{3}+C_{1} x+C_{2}$
Apply boundary conditions
At $x=0 \quad y=0$
\therefore Equation (2) gives $C_{2}=0$

At $x=L \quad y=0$
\therefore From equation (2) we get
$0=\frac{P b}{6 L}\langle L\rangle^{3}-\frac{P}{6}\langle L-a\rangle^{3}+C_{1} L$
$\therefore C_{1}=\frac{P}{6 L}\langle L-a\rangle^{3}-\frac{P b L}{6}$
Substituting values of constants C_{1} and C_{2} in equations (1) and (2) we get
EI $\theta=\frac{P b}{2 L}\langle x\rangle^{2}-\frac{P}{2}\langle x-a\rangle^{2}+\frac{P}{6 L}\langle L-a\rangle^{3}-\frac{P b L}{6}$
$E I y=\frac{P b}{6 L}\langle x\rangle^{3}-\frac{P}{6}\langle x-a\rangle^{3}+\frac{P x}{6 L}\langle L-a\rangle^{3}-\frac{P b L x}{6}$
Slope at support A
At $x=0 \quad \theta=\theta_{A}$
Substituting the given values in equation (3) we have
$\theta_{A}=\frac{150 \times 1000 \times 3.5}{6 \times 5 \times 200 \times 10^{9} \times 121.1 \times 10^{-6}}\left[0-0+\frac{1}{3.5}(3.5)^{3}-5^{2}\right]$
$\theta_{A}=9.21 \times 10^{-3} \mathrm{rad}$ Answer

Deflection at point C

From equation (4)
$y=\frac{P b}{6 E I L}\left[\langle x\rangle^{3}-L\langle x-a\rangle^{3}+\frac{x}{b}\langle L-a\rangle^{3}-L^{2} x\right]$
At $C, x=1.5$
$\therefore y_{c}=\frac{150 \times 1000 \times 3.5}{6 \times 200 \times 10^{9} \times 121.1 \times 10^{-6} \times 5}\left[1.5^{3}-0+\frac{1.5}{3.5} \times(3.5)^{3}-5^{2} \times 1.5\right]$
$y_{c}=.01138 \mathrm{~m}$
$y_{c}=11.38 \mathrm{~mm}$ Answer

| Mechanics of Materials | MENG 270 |
| :--- | ---: | ---: |
| Fall 2003 | Exam 3 Time allowed: 90min |

Name

Computer No.

Problem No. 4 [10 Points]

The steel pipe $A B$ has 102 mm outer diameter and 6 mm wall thickness. Knowing that arm $C D$ is rigidly attached to the pipe, determine the principal stresses and maximum shearing stress at point K.

Given:

$$
D_{o}=102 \mathrm{~mm} \quad t=6 \mathrm{~mm} \quad P=10 \mathrm{kN}
$$

Principal stresses at point $K=$???

Solution:

Replace the P by an equivalent force-couple system at the center C of the transverse section containing point K :

$$
\begin{aligned}
& P=10 \mathrm{kN} \quad T=(10) x(200)=2000 \mathrm{kN}-\mathrm{mm} \\
& M=10 \times 150 \mathrm{kN}-\mathrm{mm}
\end{aligned}
$$

Stresses $\sigma_{x}, \sigma_{y}, \tau_{x y}$ at point K

$$
\sigma_{x}=0 \quad \sigma_{y}=-\frac{M c}{I}
$$

T

$$
I=\frac{\pi}{64}\left(D_{o}^{4}-D_{i}^{4}\right)
$$

Substituting the given values in above equations

$$
\begin{aligned}
& \sigma_{y}=-\frac{10 \times 150 \times 1000 \times 51}{\frac{\pi}{64} \times\left(102^{4}-90^{4}\right)}=-36.55 \mathrm{MPa} \\
& \tau_{x y}=\frac{T r}{J} \\
& J=\frac{\pi}{32}\left(D_{o}^{4}-D_{i}^{4}\right) \\
& \therefore \tau_{x y}=\frac{10 \times 1000 \times 200 \times 51}{\frac{\pi}{32}\left(102^{4}-90^{4}\right)}=24.36 \mathrm{MPa}
\end{aligned}
$$

We note that shearing force P does not cause any shearing stress at point K
Principal Stresses

$$
\begin{aligned}
& \sigma_{\max , \min }=\frac{\sigma_{x}+\sigma_{y}}{2} \pm \sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}} \\
& \therefore \sigma_{\max , \min }=\frac{-36.55}{2} \pm \sqrt{\left(\frac{-36.55}{2}\right)^{2}+24.36^{2}} \\
& \sigma_{\max , \min }=-18.2 \pm 30.45 \\
& \sigma_{\max }=12.25 \mathrm{MPa} \\
& \sigma_{\min }=-48.7 \mathrm{MPa} \\
& \tau_{\max }=\sqrt{\left(\frac{-36.55}{2}\right)^{2}+24.36^{2}} \\
& \boldsymbol{\tau}_{\max }=30.45 \mathrm{MPa}
\end{aligned}
$$

Answer

Answer

Answer

