King Abdulaziz University
Engineering College
Department of Production and Mechanical System Design


MENG 270 Mechanics of Materials
Final Exam
Wednesday: 22/11/1424 H
Time Allowed: Two Hours

| Name: | Sec. No.: | ID No.: |
| :--- | :--- | :--- |


| Question 1 |  | 10 |
| :---: | :---: | :---: |
| Question 2 |  | 10 |
| Question 3 |  | 10 |
| Question 4 |  | 10 |
| Question 5 |  | 10 |
| Question 6 |  | 10 |
| TOTAL |  | 60 |

## 园 

## Instructions

1. There are totally 6 problems in this exam.
2. Show all work for partial credit.
3. Assemble your work for each problem in logical order.
4. Justify your conclusion. I cannot read minds.

|  |  |  |
| :--- | :--- | :--- |
| Mechanics of Materials | بسم اله الرحمن الرحيم |  |
| MENG270 |  | Time one hour |
| Final Exam | Wednesday: 22/11/1424 H |  |


| Student Name: |  |  | Sec. No.: |  |
| :--- | :--- | :--- | :--- | :--- |

1. Are these statements true or false?
a. The shear strain in a rod is the deformation per unit length
b. The Hook's law states that for small deformations the stress is directly proportional to the strain.
c. The ratio of the lateral strain over the axial strain is called Poisson's ratio.
d. The hoop stress of spherical thin-walled pressure vessels is twice as large as the longitudinal stress.
e. Ductile materials are characterized by the fact that, when subjected to a tensile test, they fail suddenly through fracture without any prior yielding.
f. The failure criterion most frequently used for brittle materials is the maximum-shear-stress criterion.
g. The plane of maximum shearing stress is at 45 degree to the principal plane.
h. The beam which has a fixed end at $x=0$ and is supported by a roller at $x=L$ is statically indeterminate.
i. If the stress on a transverse section of a column is less than the allowable strength then you can conclude that the column has been properly designed.
j. The strain energy density is equal to the area under the loaddeformation diagram.
2. A beam is constructed by gluing three long, rectangular x-cross section piece of wood so that the resulting $x$-section is as shown below in Figure (1a). The loading is such that, at a particular transverse section, the internal shear force and the bending moment are as shown in Figure (1b).


Figure (1)

Use the point labeled on Figure (1a) to complete the statement below. (There may be more than one answer for each statement):
a) Zero normal stress occurs at Point(s)
b) Zero shear stress occurs at Point(s)
$\qquad$
C
E, A .
c) Maximum compressive stress occurs at Point(s) $\qquad$ E
d) Maximum shear stress occurs at Point(s) $\qquad$ C
e) Maximum tensile stress occurs at Point(s) $\qquad$ A .
3. The beam ABCD is loaded by a force $W=30 \mathrm{KN}$ by the arrangement shown in the Figure (2). The cable passes over a small frictionless pulley at B and is attached at $E$ to the vertical arm. Calculate the following:
a) The reaction forces at $A$ and $D$.
b) The axial forces $N$ at section $C$, which is just to the left of the vertical arm.
c) The shear force $V$ at section $C$.
d) The bending moment $M$ at section $C$.


Figure (2)


## Solution

$$
\begin{array}{ll}
\sum F_{x}=0: & A_{x}=24 \mathrm{KN} \\
\sum F_{y}=0: & A_{y}+D_{y}=48 \mathrm{KN} \\
\sum M_{A}=0: & -30(2)-18(4)+36+D_{y}(6)=0 \\
& D_{y}=16 \mathrm{KN} \text { and } A_{y}=32 \mathrm{KN}
\end{array}
$$



Answers:
a) $A_{x}=24 \mathrm{KN}, A_{y}=20 \mathrm{KN}$, and $D_{y}=28 \mathrm{KN}$.
b) $\quad N=24 \mathrm{KN}$.
c) $\mathrm{V}=2 \mathrm{KN}$.
d) $\mathrm{M}=68 \mathrm{KN}$.

|  |  |
| :--- | :--- |
| Mechanics of Materials | Open-book Exam |
| MENG270 |  |
| Final Exam | Time 1 hrs |
| الهَ الرحمن الرحيم | Wednesday: 22/10/1424 H |


| Student Name: |  |  | Sec. No.: |  |
| :--- | :--- | :--- | :--- | :--- |

4. Each member of the truss shown in Figure (3) is made of aluminum ( $E=72 \mathrm{GPa}$ ). If the cross section area of the member BC is $2000 \mathrm{~mm}^{2}$ and of the member CD is $2500 \mathrm{~mm}^{2}$. Determine the strain energy of the truss.


Figure (3)

## Solution

Strain Energy of the truss is given by

$$
\sum \frac{F_{i}^{2} L_{i}}{2 A_{i} E}
$$

Where, $\mathrm{F}_{\mathrm{i}}$ is the force in a given member under the combined loading.

## Forces in members

Consider the equilibrium of joint C as shown in Figure (a)
$\mathrm{F}_{\mathrm{BC}(\mathrm{x})}=\mathrm{F}_{\mathrm{BC}} \cos 36.87=0.8 \mathrm{~F}_{\mathrm{BC}}$
$\mathrm{F}_{\mathrm{BC}(\mathrm{y})}=\mathrm{F}_{\mathrm{BC}} \sin 36.87=0.6 \mathrm{~F}_{\mathrm{BC}}$
$\mathrm{F}_{\mathrm{DC}(\mathrm{x})}=\mathrm{F}_{\mathrm{DC}} \sin 22.6=0.385 \mathrm{~F}_{\mathrm{DC}}$
$\mathrm{F}_{\mathrm{DC}(\mathrm{y})}=\mathrm{F}_{\mathrm{DC}} \cos 22.62=0.923 \mathrm{~F}_{\mathrm{DC}}$
$\Sigma \mathrm{F}_{\mathrm{x}}=0$

$$
\begin{gather*}
\mathrm{F}_{\mathrm{DC}(\mathrm{x})}-\mathrm{F}_{\mathrm{BC}(\mathrm{x})}-30=0 \\
0.385 \mathrm{~F}_{\mathrm{DC}}-0.8 \mathrm{~F}_{\mathrm{BC}}=30 \tag{1}
\end{gather*}
$$


$\Sigma \mathrm{F}_{\mathrm{y}}=0$
Figure (a)

$$
\begin{gather*}
\mathrm{F}_{\mathrm{DC}(\mathrm{y})}-\mathrm{F}_{\mathrm{BC}(\mathrm{y})}-80=0 \\
0.923 \mathrm{~F}_{\mathrm{DC}}-0.6 \mathrm{~F}_{\mathrm{BC}}=80 \tag{2}
\end{gather*}
$$

Solving equations (1) \& (2)

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{BC}}=6.127 \mathrm{kN} \\
& \mathrm{~F}_{\mathrm{DC}}=90.65 \mathrm{kN}
\end{aligned}
$$

## Length of members

$$
\begin{gathered}
L_{B C}=\sqrt{2.4^{2}+3.2^{2}}=4 \mathrm{~m} \\
L_{D C}=\sqrt{2.4^{2}+1^{2}}=2.6 \mathrm{~m}
\end{gathered}
$$

## Strain Energy

$\mathrm{U}=\mathrm{U}_{\mathrm{BC}}+\mathrm{U}_{\mathrm{DC}}$

$$
\begin{aligned}
& U=\frac{F_{B C}^{2} L_{B C}}{2 A_{B C} E}+\frac{F_{D C}^{2} L_{D C}}{2 A_{D C} E} \\
& U=\frac{\left(6.127 \times 10^{3}\right)^{2} \times 4}{2 \times 2000 \times 10^{-6} \times 72 \times 10^{9}}+\frac{\left(90.65 \times 10^{3}\right)^{2} \times 2.6}{2 \times 2500 \times 10^{-6} \times 72 \times 10^{9}} \\
& U=59.8 \quad \mathrm{~J}
\end{aligned}
$$

5. Beam $C E$ rests on beam AB as shown in Figure (4). Knowing that a W $250 \times 49.1$ rolled steel shape is used for each beam $(E=200 \mathrm{GPa})$, determine the following:
a) The deflection at point D due to point load on beam CE.
b) Forces acting on beam AB.
c) Deflection at point C on beam AB .
d) Total deflection at point D .


Figure (4)

## Solution

(a) For convenience let us split the given structure into two parts as shown in figure A little consideration will show that the deflection $y_{D}$ at point D will be equal to $\mathrm{y}_{\mathrm{D}}=$ Deflection of beam CD due to load 130 kN at $\mathrm{D}+$ Deflection of beam AB due combined loading at point C .

## Deflection of beam CD

Let us consider simply supported beam CD, with point load
130 kN at point D .
$\mathrm{a}=1.2 \mathrm{~m} ; \mathrm{b}=1.2 \mathrm{~m} ; \mathrm{L}=2.4 \mathrm{~m} ; \mathrm{x}=\mathrm{L} / 2$;

$$
\left.\mathrm{I}=70.8 \times 10^{-6} \mathrm{~m}^{4} \quad \text { (from table }\right)
$$

Using relation,

$$
\begin{aligned}
& y_{1}=\frac{P L^{3}}{48 E I} \\
& y_{1}=\frac{130 \times 1000 \times 2.4^{3}}{48 \times 200 \times 10^{9} \times 70.8 \times 10^{-6}}=0.002644 \mathrm{~m} \\
& \mathrm{y}_{1}=2.644 \mathrm{~mm} \\
& \text { Deflection of beam AB at point } \mathbf{C}
\end{aligned}
$$



Now we consider simply supported beam AB with two point loads;
65 kN each acting at point C and D . The deflection $\mathrm{y}_{2}$ at point C
is determined by using superposition theorem.
Deflection due to point load at point C
$\mathrm{a}=0.6 \mathrm{~m} ; \mathrm{b}=3.0 \mathrm{~m} ; \mathrm{L}=3.6 \mathrm{~m} ; \mathrm{x}=\mathrm{a}$

Using relation

$$
\begin{aligned}
& y^{\prime}=\frac{P a^{2} b^{2}}{3 E I L} \\
& y^{\prime}=\frac{65 \times 100 \times 0.6^{2} \times 3^{2}}{3 \times 200 \times 10^{9} \times 70.8 \times 10^{-6} \times 3.6}=0.001377 \mathrm{~m}
\end{aligned}
$$

$$
y^{\prime}=1.377 \mathrm{~mm}
$$

Deflection at C due to point load at D $\mathrm{a}=3.0 \mathrm{~m} ; \mathrm{b}=0.6 \mathrm{~m}, \mathrm{~L}=3.6 \mathrm{~m} ; \mathrm{x}<\mathrm{a}$
Using relation

$$
\begin{aligned}
y^{\prime \prime} & =\frac{P b}{6 E I L}\left[x^{3}-\left(L^{2}-b^{2}\right) x\right] \\
y^{\prime \prime} & =\frac{65 \times 1000 \times 0.6}{6 \times 200 \times 10^{9} \times 70.8 \times 10^{-6} \times 3.6}\left[0.6^{3}-\left(3.6^{2}-0.6^{2}\right) \times 0.6\right]=0.000936 \mathrm{~m} \\
\therefore y_{2} & =y^{\prime}+y^{\prime \prime}=1.377+0.936 \\
\mathrm{y}_{2} & =2.313 \\
\mathrm{y}_{\mathrm{D}} & =\mathrm{y}_{1}+\mathrm{y}_{2}=2.644+2.313 \\
\mathrm{y}_{\mathrm{D}} & =4.96 \mathrm{~mm}
\end{aligned}
$$

6. Knowing that the couple shown in Figure (5) acts in vertical plane, determine the stress at point A and at point B.


Figure (5)

## Solution

Considering that the cross sectional area the centroidal moment of inertia of the section is;

$$
\begin{aligned}
& \mathrm{I}=\mathrm{I}_{\text {(rectangle) }}-2 \mathrm{I}_{\text {(circle) }} \\
& I=\frac{b h^{3}}{12}-2\left(\frac{\pi d^{4}}{64}\right) \\
& I=\frac{120 \times 60^{3}}{12}-2\left(\frac{\pi \times 38^{4}}{64}\right)
\end{aligned}
$$

$$
\mathrm{I}=1955292.3 \mathrm{~mm}^{4}
$$

## Stress at point A

$$
\sigma_{A}=\frac{M c}{I}
$$

$$
\mathrm{M}=3 \mathrm{kN}-\mathrm{m}=3 \times 10^{6} \mathrm{~N}-\mathrm{mm}
$$

$$
\mathrm{c}=30 \mathrm{~mm}
$$

$$
\therefore \sigma_{A}=\frac{3 \times 10^{6} \times 30}{1955292.3}
$$

$$
\sigma_{A}=-46.02 \mathrm{MPa} \text { (compression) }
$$

## Stress at point $B$

$$
\begin{aligned}
\sigma_{B} & =\frac{M c}{I} \\
\mathrm{c} & =19 \mathrm{~mm} \\
\therefore \sigma_{B} & =\frac{30 \times 10^{6} \times 19}{1955292.3}
\end{aligned}
$$

