
Appendix

An Introduction to Mathematica

Mathematica  is  a  powerful  tool  for  performing  both  symbolic  and  numerical  calculations.  It  is
available  on  all  major  computing  platforms,  including  Macintosh,  Windows  and  UNIX  systems.  The
notebook  interface  on  all  systems  is  very  similar.  A  user  normally  enters  commands  in  cells  in  a
notebook  window  and  executes  these  commands  to  see  the  results  appear  in  the  same  notebook.
Starting  with  version  3.0  of  Mathematica,  the  notebook  interface  has  become  quite  sophisticated.  In
addition  to  Mathematica  input  and  output,  the  notebooks  can  now  contain  graphics  and  typeset  text,
including all mathematics symbols and complicated equations. The style of a cell determines whether it
contains  live  input  and  output  or  just  text.  Similar  to  a  word  processor,  several  other  specialized  cell
styles are available  to create  section headings,  sub-headings,  etc. A large number  of pull-down menus
are available to manipulate information in different notebook cells.  

Mathematica  is  a  complex  system  and  requires  considerable  practice  to  become  proficient  in  its  use.
However getting started with it and using it as an advanced calculator requires understanding of only a
few  basic  concepts  and  knowledge  of  few  commands.  This  brief  introduction  is  intended  as  a  quick
start  guide  for  the  users  of  this  text.  Serious  users  should  consult  many  excellent  books  on
Mathematica  listed at  the end of  this chapter.  Mathematica  has excellent  on-line help system as well.
This  help  system  has  usage  instructions  and  examples  of  all  Mathematica  commands.  The  entire
Mathematica book is available on-line as well and is accessible through the help browser. 

1. Basic manipulations in Mathematica
Mathematica  performs  a  wide  variety  of  numeric,  graphic,  and  symbolic  operations.  Expressions  are
entered using a syntax similar to that of common programming languages such as BASIC, FORTRAN,
or  Pascal.  Some  of  the  operators  available  are:  +[add],  -[subtract],  *[multiply],  /[divide],
^[exponentiate],  and  Sqrt[  ]  [square  root].  The  multiplication  operator  is  optional  between  two
variables.

A command can be split  into any number of lines. The Enter key  (or Option-Return)  on the keyboard
is  used  to  actually  execute  the  command  line  containing  the  insertion  point  (blinking  vertical  line).
Note  on  some  keyboards  the  usual  Return  key  (the  one  used  to  move  to  the  next  line)  is  labelled  as
Enter.  As far as Mathematica is concerned this is still a Return key. A semicolon  [;] is used at the end
of  a  line  of  Mathematica  input  if  no  output  is  desired.  This  feature  should  be  used  freely  to  suppress
printout of long intermediate expressions that no one cares to look at anyway. 



1 � 5 � 32 � 43 � 34^3

29650
����������������
4913

As seen  from this  example,  Mathematica  normally  does  rational  arithmetic.  To get  numerical  answer
the function 'N' can be used.

N�1 � 5 � 32 � 43 � 34^3�

6.03501

The  N  function  (or  any  other  function  requiring  a  single  argument)  can  also  be  applied  using  the  //
operator as follows.

1 � 5 � 32 � 43 � 34^3 �� N

6.03501

Caution on Mathematica Input Syntax

 It is important  to remember  that Mathematica  commands are case-sensitive.  The built-in functions all
start with an uppercase letter. Also you must be very careful in using brackets.  Different brackets have
different meaning.  Arguments  to functions  must be enclosed in square brackets ([]). Curly  braces ({})
are used to define lists and matrices. Parentheses '()' do not have any built-in function and therefore can
be used to group terms in expressions, if desired.

To  indicate  multiplication  operation  one  can  use  either  an  asterisk  (*)  or  simply  one  or  more  blank
space  between  the  two  variables.  When  a  number  precedes  a  variable  even  a  blank  is  not  necessary.
Sometimes  this  convention  can  lead  to  unexpected  problems  as  demonstrated  in  the  following
examples. 

Suppose  one  wants  product  of  variables  a  and  b,  a  space  is  necessary  between  the  two  variables.
Without space Mathematica simply defines a new symbol "ab" and does not give the intended product.

a � 10; b � 3;
2�ab

2 ab

No space is needed between 2 and a but there must be a space or * between a and b to get the product
2�a b.
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2�a b

60

If we enter 2a^3b without any spaces it is interpreted as 2 a3 b and not as 2�a3�b . 

2�a^3�b

6000

In situations like these it is much better to use parentheses  to make the association clear. For example
there is no ambiguity in the following form.

�2�a�^�3�b�

512000000000

Using built-in functions

Mathematica  has  a  huge  library  of  built-in  functions.  Few  common  ones  are  introduced  here.  The
functions 'Simplify'  and 'Expand' are used to get expressions in simpler forms. Note the use of Clear to
remove any previously defined values for a.

Clear�a�;
Simplify�a2 � 3 a � �a � b� a�

a �3 � 2 a � b�

Expand�a2 � 3 a � �a � b� a�

3 a � 2 a2 � a b

Just  like a programming  language  we can assign  names  to expressions  so that they can be referred  to
later. For example we define an expression e1 as follows.

e1 � x � Sin�x� Cos�x^3� � Exp�x�

x � E�x Cos�x3� Sin�x�

With this definition  the expression on the right-hand side of the equal sign can be manipulated  easily.
For  example  it  can  be  differentiated  with  respect  to  x  as  follows.  For  later  reference  the  derivative
expression is denoted by de1.
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de1 � D�e1, x�

1 � E�x Cos�x� Cos�x3� � E�x Cos�x3� Sin�x� � 3 E�x x2 Sin�x� Sin�x3�

We can integrate de1 as follows.

Integrate�de1, x�

1
����
2
�2 x � E�x Sin�x � x3� � E�x Sin�x � x3��

This does not look like e1. But the following expansion,  using the trigonometric  identities, shows that
it  is  indeed  equal  to  e1.  Note  the  use  of  '%'  symbol  to  refer  to  the result  of  previous  evaluation  as  a
short cut.

Expand�%, Trig �� True�

1
����
2
�2 x � 2 E�x Cos�x3� Sin�x��

Note that % refers to result of the previous evaluation and not the result appearing in the cell just above
the current cell. In a notebook with many input cells one can execute any cell simply by highlighting it
(or  placing  the  insertion  point  anywhere  in  the  cell).  The  %  will  always  refer  to  the  most  recent
evaluation.  In fact the evaluation  does not have to be in the current  notebook and can be in any other
notebook  open  at  the  same  time.  Therefore  the  use  of  %  as  a  shortcut  is  strongly  discouraged.  It  is
better to assign a variable to refer to an evaluation in other places.

Mathematica  can  also  compute  definite  integrals  involving  complicated  expressions  using  numerical
integration.

NIntegrate�e1, �x, 0, 1��

0.724231

Substitution rule

The  symbol  '/.'  (slash-period)  is  a  useful  operator  and  is  used  to  substitute  different  variables  or
numerical  values  into  existing  expressions.  For  example  expression  e1  can be  evaluated  at  x � 1.5  as
follows.

e1 /. x->1.5

1.28346
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The  arrow  symbol  is  a  combination  of  hyphen(-)  and  greater  than  sign  (>)  and  is  known  as  'rule'  in
Mathematica.  Of  course  more  complicated  substitutions  are  possible.  The  following  example
illustrates defining a new expression called e2 by substituting x � a � Sin�b� in expression e1.

e2 = e1 /. {x->a + Sin[b]}

10 � Sin�3� � E�10�Sin�3� Cos��10 � Sin�3��3� Sin�10 � Sin�3��

Substitute a � 1 and b � 2 in expression e2.

e2 /. {a->1, b->2}

1 � Sin�2� � E�10�Sin�2� Cos��1 � Sin�2��2� Sin�1 � Sin�2��

To get numerical result after substituting a � 1 and b � 2 in expression e2 we can use N function 

N[e2 /. {a->1, b->2}]

1.90928

Note that the same result can also be obtained as follows. 

a = 1;
b = 2;
N[e2, 10]

10.14109419

However the substitution form is much more desirable.  This second form defines the symbols a and b
to have the indicated numerical values. Mathematica will automatically substitute these values into any
subsequent evaluation that involves a and b.

a + b x

1 � 2 x

The  only  way  to  later  get  symbolic  expressions  involving  a  and  b  would  be  to  explicitly  clear  these
variables as follows.

Clear[a, b];
a + b x

a � b x
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2. Lists and Matrices
List  are  quantities  enclosed  in  curly  brackets  ({}).  They  are  one  of  the  basic  data  structures  used  by
Mathematica. Many Mathematica  functions expect arguments  in the form of lists and return results  as
lists. When working with these functions, it is important to pay close attention to the nesting of braces.
Two expressions, that otherwise are identical, except that one is enclosed in single set of braces and the
other  in double  braces means  two entirely  different  things  to Mathematica.  Beginners  often don't  pay
close attention to braces and get frustrated when Mathematica does not do what they think it should be
doing. 

Lists

Here is an example of a one dimensional list with 6 elements.

s � �1, 3, Sin�bb�, 2 � x, 5, �3 � y� � x^3�

�1, 3, Sin�bb�, 2 x, 5,
3 y
��������
x3
�

The Length function gives the number of elements in a list.

Length�s�

6

We  can  extract  elements  of  a  list  by  enclosing  the  element  indices  in  double  square  brackets.  For
example to get elements 3, 4, and 6 from s we use 

ss � s���3, 4, 6���

�Sin�bb�, 2 x,
3 y
��������
x3
�

Most standard algebraic operations can be applied to all elements of a list. For example to differentiate
all elements of a list by x, we simply need to use D function on the list.

D�ss, x�

�0, 2, �
9 y
��������
x4
�
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Multidimensional  lists  can be  defined  in  a  similar  way.  Here  is an  example  of  a  two dimensional  list
with  first  row  having  one  element,  second  row  three  elements  and  the third  row  as  the  s  list  defined
above.

a � ��1�, �2, 3, 4�, s�

��1�, �2, 3, 4�, �1, 3, Sin�bb�, 2 x, 5,
3 y
��������
x3
��

Length�a�

3

Elements  of  a  lists  can  be  extracted  by  specifying  row  number  and  the  element  number  within  each
row  in  pairs  of  square  brackets.  For  example,  to  get  the  second  row  of  list  a  we  use  the  following
structure.

a��2��

�2, 3, 4�

To get the sixth element of the third row of list a we use the following structure.

a��3, 6��

3 y
��������
x3

Obviously Mathematica will generate an error message if one tries to get an element that is not defined
in a list. For example trying to get the fourth  element from the second row will produce the following
result.

a��2, 4��

Part::partw :  Part 4 of �2, 3, 4� does not exist.

��1�, �2, 3, 4�, �1, 3, Sin�bb�, 2 x, 5,
3 y
��������
x3
��	2, 4


Sometimes  it  is  necessary  to  change  the  structure  of  a  list.  Flatten  and  Partition  functions  are
simple ways to achieve this. Flatten removes all internal braces and converts any multidimensional  list
into a single  flat  list,  keeping the order  same as  that in the original  list.  For example  we can define  a
new one dimensional list b by flattening list a as follows. 
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b � Flatten�a�

�1, 2, 3, 4, 1, 3, Sin�bb�, 2 x, 5,
3 y
��������
x3
�

Using  Partition  we  can  create  partitions  (row  structure)  in  a  given  list.  The  second  argument  of
Partition  specifies  number  of elements in each row.  Extra elements  that do not define a complete  row
are ignored.

Partition�b, 3�

��1, 2, 3�, �4, 1, 3�, �Sin�bb�, 2 x, 5��

Partition�b, 4�

��1, 2, 3, 4�, �1, 3, Sin�bb�, 2 x��

Matrices

Matrices are special two dimensional lists in which each row has exactly the same number of elements.
Here we define a 3x4 matrix m.

m = {{1,2,3,4},{5,6,7,8},{9,10,11,12}}

��1, 2, 3, 4�, �5, 6, 7, 8�, �9, 10, 11, 12��

To see the result displayed in a conventional matrix form we use MatrixForm.

MatrixForm�m�

�

�


1 2 3 4

5 6 7 8

9 10 11 12

�

�

�������

TableForm is another way of displaying multi-dimensional lists.

TableForm�m�

1 2 3 4

5 6 7 8

9 10 11 12
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The following two dimensional list is not a valid matrix because number of elements in each row is not
the same. However there is no error message produced because it is still a valid list in Mathematica.

a � ��1�, �2, 3�, �4, 5, 6��

��1�, �2, 3�, �4, 5, 6��

MatrixForm�a�

�

�


�1�
�2, 3�
�4, 5, 6�

�

�

�������

Once  a  matrix  is  defined,  standard  matrix  operations  can  be  performed  on  it.  For  example  we  can
define a new matrix mt as Transpose of m.

mt � Transpose�m�; MatrixForm�mt�

�

�



1 5 9

2 6 10

3 7 11

4 8 12

�

�

������������

Matrices can be multiplied by using . (period) between their names.

MatrixForm�mt.m�

�

�



107 122 137 152

122 140 158 176

137 158 179 200

152 176 200 224

�

�

������������

Using * or blank will produce an error or simply element by element multiplication.

mt � m

Thread::tdlen :  Objects of unequal length
in ��1, 5, 9�, �2, 6, 10�, �3, 7, 11�, �4, 8, 12��
��1, 2, 3, 4�, �5, 6, 7, 8�, �9, 10, 11, 12�� cannot be combined.

��1, 2, 3, 4�, �5, 6, 7, 8�, �9, 10, 11, 12��
��1, 5, 9�, �2, 6, 10�, �3, 7, 11�, �4, 8, 12��

Here we get an element by element product and not the matrix product.
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mt � mt

��1, 25, 81�, �4, 36, 100�, �9, 49, 121�, �16, 64, 144��

When using MatrixForm,  it is very important to note that the MatrixForm is used for display purposes
only.  If  a  matrix  is  defined  with  the  MatrixForm  in  it,  that  matrix  definition  cannot  be  used  in  any
subsequent calculation. For example, consider the following definition of matrix 'm' used previously. 

m � MatrixForm���1, 2, 3, 4�, �5, 6, 7, 8�, �9, 10, 11, 12���

�

�


1 2 3 4

5 6 7 8

9 10 11 12

�

�

�������

The output looks exactly like it did in the earlier case. However  we cannot perform any operations  on
matrix m in this form. For example using Transpose  function on m simply returns the initial matrix m
wrapped in Transpose.

Transpose�m�

Transpose�
�

�


1 2 3 4

5 6 7 8

9 10 11 12

�

�

��������

The solution obviously  is not  to use the MatrixForm  in the definition  of matrices.  After the definition
we can use the MatrixForm to get a nice looking display. 

m � ��1, 2, 3, 4�, �5, 6, 7, 8�, �9, 10, 11, 12��; MatrixForm�m�

�

�


1 2 3 4

5 6 7 8

9 10 11 12

�

�

�������

Elements of matrices  can be extracted  using the double  square brackets.  For example,  the second row
of m can be extracted as follows.

m2 = m[[2]]

�5, 6, 7, 8�

The element in the 2nd row and the 4th column is

10



m[[2, 4]]

8

Extracting a  column is little  more  difficult.  The simplest  way is to transpose  the matrix and then take
its desired row (which obviously corresponds to the original column). For example the second column
of matrix m is extracted as follows.

c2 = Transpose[m][[2]]

�2, 6, 10�

Matrices can also be defined in terms of symbolic expressions. For example here is a 2x2 matrix called
m.

m = {{y, 2*x}, {(3*y)/x^3, 4*y}}; MatrixForm[m]

�
�


y 2 x
3 y������x3 4 y

�
�
���

Determinant of m

Det[m]

�
6 y
��������
x2

� 4 y2

Inverse of m

mi = Inverse[m]; MatrixForm[mi]

�

�



4 y������������������
� 6 y�������

x2
�4 y2

� 2 x������������������
� 6 y�������

x2
�4 y2

� 3 y��������������������������
x3 �� 6 y�������

x2
�4 y2�

y������������������
� 6 y�������

x2
�4 y2

�

�

�������

Check the inverse

MatrixForm[Simplify[mi.m]]

� 1 0

0 1
�

Operations, such as differentiation and integration, are performed on each element of a matrix.
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D[m,y]//MatrixForm

�
�


1 0
3�����x3 4

�
�
���

Integrate[m,x]//MatrixForm

�
�


x y x2

� 3 y��������2 x2 4 x y

�
�
����

Generating lists with Table function

The Table function is a handy tool to generate lists or matrices with a systematic  pattern. For example
to generate a 3x5 matrix with all entries as zero we use the following form.

m � Table�0, �3�, �5��; MatrixForm�m�

�

�


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

�

�

�������

The  first  argument  to  Table  function  can  be  any  expression.  Here  is  a  3x4  matrix  whose  entries  are
equal to the sum of row and column indices divided by 3^(column index).

z � Table��i � j� � 3^j, �i, 1, 3�, �j, 1, 4��; MatrixForm�z�

�

�



2���3
1���3

4�����27
5�����81

1 4���9
5�����27

2�����27

4���3
5���9

2���9
7�����81

�

�

�����������

Using  the  If  command  we  can  construct  complicated  matrices.  For  example  here  is  a  4x4  upper
triangular matrix.

z � Table�If�i � j, 0, �i � j� � 3^j�, �i, 1, 4�, �j, 1, 4��; MatrixForm�z�

�

�



2���3
1���3

4�����27
5�����81

0 4���9
5�����27

2�����27

0 0 2���9
7�����81

0 0 0 8�����81

�

�

�����������������

Note the syntax of If command is as follows.
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If�test, Statements to be executed if test is True, Statements to be executed if test is False�

Caution when dealing with row and column vectors

Since  Mathematica  treats  matrices  as  essentially  lists,  it  does  not  distinguish  between  a  column  or  a
row  vector.  The  actual  form  is  determined  from  syntax  in  which  it  is  used.  For  example  define  two
vectors a and b as follows.

a = {1, 2, 3}; b = {4, 5, 6};

Matrix  inner  product  (Transpose[a]  .  b)  is  evaluated  simply  as  a  .  b,  resulting  in  a  scalar.  Explicitly
evaluating Transpose[a]. b will produce an error.

a . b

32

Transpose[a] . b

Transpose::nmtx :  The first two levels of the
one�dimensional list �1, 2, 3� cannot be transposed.

Transpose��1, 2, 3��.�4, 5, 6�

If we want to treat a as a column vector (3 x 1) and b as a row vector (1 x 3) to get a 3x3 matrix from
the product, we need to use Outer function of Mathematica as follows.

ab = Outer[Times, a, b]; MatrixForm[ab]

�

�


4 5 6

8 10 12

12 15 18

�

�

�������

Another way to explicitly define a 3x1 column vector is to enter it as a two dimensional list. Here each
entry defines a row of a matrix with one column.

a = {{1}, {2}, {3}}; MatrixForm[a]

�

�


1

2

3

�

�

�������

Now Transpose[a] . b makes sense. However the result is 1x1 matrix and not a scalar.

Mathematica Introduction.nb 13



Transpose[a] . b

�32�

Obviously now a . b will produce an error because the dimensions do not match.

a . b

Dot::dotsh :  
Tensors ��1�, �2�, �3�� and �4, 5, 6� have incompatible shapes.

��1�, �2�, �3��.�4, 5, 6�

To get a 3x3 matrix we need to define b as a two dimensional matrix with only one row as follows.

b = {{4, 5, 6}}

��4, 5, 6��

Now a (3x1) . b (1x3) can be evaluated directly, as one would expect.

MatrixForm[a . b]

�

�


4 5 6

8 10 12

12 15 18

�

�

�������

3. Solving equations
An equation  in  Mathematica  is  defined  as  an  expression  with  two parts  separated  by two equal  signs
(==, with out any spaces between the two signs). Thus the following is an equation. 

x^3 � 3 �� 0

�3 � x3 �� 0

Note you get the following strange looking error message if you try to define an equation with a single
equal  sign.  (The  error  message  makes  sense  if  you  know  more  details  of  how  Mathematica  handles
expressions internally.)
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x^3 � 3 � 0

Set::write :  Tag Plus in �3 � x3 is Protected.

0

Equations  can  also  be  assigned  to  variables  for  later  reference.  For  example  we  can  call  the  above
equation as eq so that we can refer to it in other computations.

eq = x^3 - 3 == 0

�3 � x3 �� 0

A single equation, or a systems of equations, can be solved using the Solve command.

sol � Solve�eq, x�

��x � ���3�1�3�, �x � 31�3�, �x � ��1�2�3 31�3��

Note  the  solution  is  returned  in  the  form  of  a  two  dimensional  list  of  substitution  'rules'.  Because  of
this  form  we  can  substitute  any  solution  into  another  expression  if  desired.  For  example  we  can
substitute the second solution back into the equation to verify that the solution is correct, as follows.

eq /. sol[[2]]

True

The 'Solve'  command tries to find all possible  solutions  using symbolic  manipulations.  If a  numerical
solution is desired the 'NSolve' command is usually much faster.

NSolve[x^3 - 3 == 0, x]

��x � �0.721125 � 1.24902 I�, �x � �0.721125 � 1.24902 I�, �x � 1.44225��

Both Solve and NSolve commands can be used for systems of linear or nonlinear equations.

eqn1 = x + 2y + 3z == 41; 
eqn2 = 5x + 5y + 4z == 20; 
eqn3 = 3y + 4z == 125; 
sol = Solve[{eqn1, eqn2, eqn3}, {x, y, z}]

��x � �
527
����������
13

, y �
635
����������
13

, z � �
70
�������
13
��
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Notice  that  even  when  there  is  only  one  solution,  the  result  is  a  two  dimensional  list.  If  we  want  to
evaluate a given function at this solution point, we still need to extract the first element of this list. For
example

a � N�Sin�x y��Cos�yz� �. sol��1���

�0.810238

The following  substitution  produces  the same result  but  in the form of a  list whose  structure  must be
kept in mind if it is to be used in other expressions. 

b � N�Sin�x y��Cos�yz� �. sol�

��0.810238�

For  example,  since  a  is  a  scalar  as  defined  by  the  first  form,  it  can  be  used  in  any  matrix  operation.
However b can only used with appropriate sized matrices. 

a �a1, a2, a3�

��0.810238 a1, �0.810238 a2, �0.810238 a3�

b �a1, a2, a3�

Thread::tdlen :  Objects of unequal
length in ��0.810238� �a1, a2, a3� cannot be combined.

��0.810238� �a1, a2, a3�

A linear  system of equations,  written in matrix form as K d = R, can be solved very efficiently  using
the LinearSolve[K, R] command as follows.

K � ��2, 4, 6�, �7, 9, 2�, �1, 2, 13��;
R � �1, 2, 3�;
LinearSolve�K, R�

� 21�������
20

, �
13
�������
20

,
1
����
4
�
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4. Plotting in Mathematica
Mathematica  supports  both  2-dimensional  and  3-dimensional  graphics.  The  Plot  command  provides
support for  2-dimensional  graphs  of one or more functions  specified as expressions,  or functions.  The
following shows plot of an expression in the interval from -2 to 2.

p1 = Plot[Sin[x] Cos[x]/(1+x^2),{x,-2,2}];
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-0.1

0.1

0.2

0.3

Multiple  plots  can  be  shown  on  the  same  graph  using  the  'Show'  command.  The  following  example
plots expression e1 and its first derivative.  Each plot command automatically  displays  resulting graph.
For  multiple  plots,  usually  the  final  plot  showing  all  graphs  superimposed,  is  of  interest.  Using
DisplayFunction as Identity, suppresses display of intermediate plots.

de1 = D[Sin[x] Cos[x]/(1+x^2),x];
p2 = Plot[de1,{x,-2,2}, PlotStyle->{RGBColor[0,0,1]},

DisplayFunction -> Identity];
Show[{p1,p2}];
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The RGBColor  function  returns  a combination  color  by mixing  specified  amounts  of Red,  Green and
Blue  colors.  In  the  example  the  Blue  component  is  set  to  1  and  others  to  0  to  get  a  blue  color.  Use
Mathematica on-line help to explore many other plot options. 

Note before generating the plot for the derivative we defined a new expression and then used it in the
plot function. If we had actually used the derivative operation inside the argument of the Plot function,
we would get a series of strange error messages as follows.

Plot[D[Sin[x] Cos[x]/(1+x^2),x],{x,-2,2}];

General::ivar :  �2. is not a valid variable.

General::ivar :  �2. is not a valid variable.

General::ivar :  �2. is not a valid variable.

General::stop :  Further output of
General::ivar will be suppressed during this calculation.

Plot::plnr :  

�x
Sin�x� Cos�x�
�������������������������������������

1 � x2
is not a machine�size real number at x � �2..

Plot::plnr :  

�x
Sin�x� Cos�x�
�������������������������������������

1 � x2
is not a machine�size real number at x � �1.83773.

Plot::plnr :  

�x
Sin�x� Cos�x�
�������������������������������������

1 � x2
is not a machine�size real number at x � �1.66076.

General::stop :  Further output of
Plot::plnr will be suppressed during this calculation.

0.2 0.4 0.6 0.8 1
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The reason for the error is that Plot and several  other built-in functions (for valid reasons but difficult
to  explain  here)  do  not  evaluate  their  arguments.  We  can  force  them  to  evaluate  the  arguments  by
enclosing the computation inside Evaluate as follows.
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Plot[Evaluate[D[Sin[x] Cos[x]/(1+x^2),x]],{x,-2,2}];
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Functions of two variables can be shown either as contour plots or as three dimensional surface plots. 

f � Sin�x��Cos�y�

Cos�y� Sin�x�

ContourPlot�f, �x, �Π, Π�, �y, �Π, Π�, PlotPoints �� 50�;
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Plot3D�f, �x, �Π, Π�, �y, �Π, Π��;
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5. Differential Equations
A variety  of  ordinary  differential  equations  can  be  solved  using  DSolve  command.  If  successful  this
function returns an analytical expression for solution of the differential equation.The  function also can
solve  a  limited  number  of  boundary  value  problems.  The  function  an  solve  a  single  equation  or  a
system  of  ordinary  differential  equations.  Initial  and  boundary  conditions  can  be  specified  as  part  of
these equations.

? DSolve

DSolve�eqn, y, x� solves a differential equation for the function
y, with independent variable x. DSolve��eqn1, eqn2, ... �, �y1,
y2, ... �, x� solves a list of differential equations. DSolve�
eqn, y, �x1, x2, ... �� solves a partial differential equation.

As an example we evaluate solution of the following boundary value problem.

d2 �u����������
dx2 � u � x � 0 1 � x � 3

u�1� � 2 du�������dx ��3� � 0

sol � DSolve��D�u�x�, �x, 2�� � u�x� � x �� 0,
u�1� �� 2, �D�u�x�, x� �. x �� 3� �� 0�, u�x�, x�

��u�x� � �x � Cos�x� Sec�2� �3 Cos�3� � Sin�1�� �
Sec�2� �Cos�1� � 3 Sin�3�� Sin�x���
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We can verify the solution by substituting the solution into the differential equation as follows.

ux � u�x� �. sol��1��

�x � Cos�x� Sec�2� �3 Cos�3� � Sin�1�� � Sec�2� �Cos�1� � 3 Sin�3�� Sin�x�

D�ux, �x, 2�� � ux � x

0

The solution can also be plotted as follows.

Plot�ux, �x, 1, 3��;
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The first derivative of the solution can also be plotted as follows.

Plot�Evaluate�D�ux, x��, �x, 1, 3��;
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For  more  complicated  differential  equation,  an  analytical  solution  may  not  be  possible.  In  these
situation  NDSolve  can  be  used  to  give  an  approximate  numerical  solution.  This  function  returns
solution  in  the  form  an  cubic  interpolation  function.  This  solution  can  be  plotted  using  Plot,
differentiated using D, and integrated using Integrate, just like a ordinary function.

? NDSolve

NDSolve�eqns, y, �x, xmin, xmax�� finds a numerical solution to
the ordinary differential equations eqns for the function
y with the independent variable x in the range xmin to
xmax. NDSolve�eqns, y, �x, xmin, xmax�, �t, tmin, tmax��
finds a numerical solution to the partial differential
equations eqns. NDSolve�eqns, �y1, y2, ... �, �x, xmin,
xmax�� finds numerical solutions for the functions yi.

As an example we evaluate solution of the following boundary value problem.

x� d2 �u����������
dx2 � u � x � 0 u�1� � 2 du�������dx ��3� � 0

As seen in the following, the DSolve cannot find the solution to this problem.

DSolve��x D�u�x�, �x, 2�� � u�x� � x �� 0,
u�1� �� 2, �D�u�x�, x� �. x �� 3� �� 0�, u�x�, x�

DSolve��x � u�x� � x u���x� �� 0, u�1� �� 2, u��3� �� 0�, u�x�, x�

Using NDSolve we can obtain a numerical solution as follows.

sol � NDSolve��x D�u�x�, �x, 2�� � u�x� � x �� 0,
u�1� �� 2, �D�u�x�, x� �. x �� 3� �� 0�, u�x�, �x, 1, 3��

��u�x� � InterpolatingFunction���1., 3.��, 	
��x���

The solution can also be plotted as follows.
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Plot�u�x� �. sol��1��, �x, 1, 3��;
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The first derivative of the solution can also be plotted as follows.

Plot�Evaluate�D��u�x� �. sol��1���, x��, �x, 1, 3��;
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6. Programming in Mathematica

Defining new functions

For calculations that involve many steps using interactive approach may become tedious. Mathematica
offers  a  rich  and  sophisticated  programming  environment  to  create  functions  that  perform  complex
series of computations.

The general syntax of the function definition is as follows.

newFunctionName[var1_, var2_, ...] := Module[

{localVar1, localVar2, …},
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statement 1;
statement 2;

�

last statement
]

The newFunctionName  can be any name that the user wants.  Since all  built-in functions  start  with an
upper-case  letter,  it  may  be  a  good  idea  to  start  your  functions  with  a  lower  case  letter  to  avoid  any
conflict  with  built-in  functions.  All  needed  variables  for  the function  are  enclosed  in square brackets.
For  reasons  beyond  the  scope  of  this  introductory  tutorial,  an  underscore  must  be  appended  to  all
names in the variable  list. The definition  of the function starts  with := followed  by the word 'Module'
and opening square bracket. The first line in the definition is a list of local variables that are to be used
only  inside  the body  of  the  function.  Outside  of  the  function  these  variables  do  not  exist.  The  list  of
local  variables  ends  with  a  comma.  The  remainder  of  the  function  body  can  contain  as  many
statements  as needed to achieve the goal of the function.  Each statement  ends with a semi-colon.  The
last  statement  does  not  have  a  semi-colon  and  is  the  one  that  is  returned  by  the  function  when  it  is
used. The end of the function is indicated by the closing square bracket.

Simple one line functions, that do not need any local variables, can be defined simply as follows.

oneLineFcn[var1_, var2_, ...] := expression involving vars

An example of a one line function is presented in the next section. As an example of Module we define
the following function to return stresses in thick-walled cylinders.  The tangential  and radial stresses in
an open-ended thick cylinder are given by the following formulas.

Σt � pi �ri
2

��������������
r0

2 �ri
2 ��1 � r0

2

������r2 � Σr � pi �ri
2

��������������
r0

2 �ri
2 ��1 � r0

2

������r2 �

where pi  is internal  pressure  on the cylinder,  ri  and r0  are  inner  and outer  radii  and r  is radius  of the
point where the stress is desired. 

thickCylinderStresses[pi_, ri_, r0_, r_] :=
 Module[{c1, c2, Σt, Σr},
 c1=pi ri^2/(r0^2 - ri^2);
 c2=r0^2/r^2;
 Σt=c1(1+c2);
 Σr=c1(1-c2);
 {Σt, Σr}
 ] 

After  entering  the  function  definition,  the  input  must  be  executed  to  actually  tell  Mathematica  about
the  new  function.  Unless  there  is  an  error,  the  execution  of  the  function  definition  line  does  not
produce  any  output.  After  this  the  function  can  be  used  as  any  other  Mathematica  function.  For
example we can compute stresses in a cylinder with pi = 20, ri = 5, r0 = 15 and r = 10 as follows. 
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thickCylinderStresses�20, 5, 15, 10�

� 65�������
8

, �
25
�������
8
�

Leaving some variables in symbolic form we can get symbolic results. 

�st, sr� � thickCylinderStresses�20, 5, 15, r�

� 5����
2
�1 �

225
����������
r2
�, 5

����
2
�1 �

225
����������
r2
��

These expression can be plotted to see the stress distribution through the cylinder wall.

Plot��st, sr�, �r, 5, 15�, AxesLabel �� �"r", "Stress"�,
PlotStyle �� ��GrayLevel�0��, �GrayLevel�0.5����;
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A natural  question  might  be to see  what happens  to the stresses  as  the cylinder  becomes  "thin"? This
question  can be answered  by evaluating  the stresses  at  center  of  wall  thickness  as  a function  of  inner
radius as follows.  

�st, sr� � thickCylinderStresses�20, ri, 15, �ri � 15� � 2�

�
20 ri2 �1 � 900������������������15�ri�2 ���������������������������������������������������

225 � ri2
,

20 ri2 �1 � 900������������������15�ri�2 ���������������������������������������������������
225 � ri2

�

A plot of these expressions is as follows.
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Plot��st, sr�, �ri, 5, 14�, AxesLabel �� �"ri", "Stress"�,
PlotStyle �� ��GrayLevel�0.5��, �GrayLevel�0����;
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We can see that Σt  becomes predominant stress as the wall becomes thin. The usual approximation for
thin walled  cylinders  is Σt � pi �r���������t .  We can  graphically  see how this  approximation  compares  with the
thick cylinder solution as follows. 

Plot��st, �20 �ri � 15� � 2� � �15 � ri��,
�ri, 5, 14�, AxesLabel �� �"ri", "Stress"�,
PlotStyle �� ��GrayLevel�0��, �GrayLevel�0.5����;
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Use of Map, Apply, and Thread

Frequently  we  need to  perform operations  on  a  list  of  functions  or  variables.  Many built-in  functions
are designed  to operate on lists  directly.  However  there are still  many situations  where  it is necessary
to  perform  some  operation  on  a  list  of  quantities.  In  traditional  programming  language,  we  typically
perform  these  operations  using  a  Do  loop  or  an  equivalent.  Mathematica  has  a  Do  loop  that  can  be
used in a similar  way.  However  it  also offers many other  elegant  and more convenient  ways of doing
the same thing. Map, Thread and Apply are three of these handy functions. These functions have been
used in several examples in this text.

Suppose we are given the following data that we have entered as lists in Mathematica.

data1 � �18.24, 12.12, 15.23, 5.26�;
data2 � �12.24, 19.16, 35.07, 23.46, �10.62, �7.43, 2.62, 10.42�;
data3 � �8.23, 8.96, 8.35, 9.16, 8.05�;
data4 � �8.12, 8.26, 8.34, 9.01, 9.11, 8.95, 7.29�;

We  want  to  compute  average  of  data.  The  computation  is  fairly  simple.  We  simply  need  to  add  all
entries in a data list and divide them by the number of entries. Computation of sum or multiplication of
all elements of a list is done very conveniently  by using Apply.  It does not matter  how long the list is
or whether it consists of numerical or symbolic quantities.

Apply�Plus, data1�

50.85

The  first  argument  of  Apply  is  the  function  to  be  applied  and  the  second  is  the  list  of  items.
Multiplication of all elements can be computed in exactly the same way.

Apply�Times, data1�

17709.8

Obviously  the  function  to  be  applied  must  expect  a  list  as  its  argument.  For  example  applying  Sin
function to a list will not produce any useful result. 

Apply�Sin, data1�

Sin::argx :  Sin called with 4 arguments; 1 argument is expected.

Sin�18.24, 12.12, 15.23, 5.26�

The Map function is similar to Apply, but it applies a function to each element of a list. For example if
we want to compute Sin of each term in data1 list, we can do it as follows. 
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Map�Sin, data1�

��0.572503, �0.431695, 0.459972, �0.853771�

To compute  the average  all  we need to now is  to divide  the sum by  the number  of  entries  in the list.
The  Length  function,  described  earlier,  does  exactly  this.  Thus  the  following  one  line  program  can
compute average of any list.

average�n_� :� Apply�Plus, n� � Length�n�

average�data1�

12.7125

To compute  average of all different  data lists, we can use the average function repeatedly on the other
lists.  However  it  is  much  more  convenient  to  define  a  new  list  of  all  data  and  simply  Map  average
function  to  each  element  of  this  list.  We  first  define  a  new  list  and  then  use  the  average  function
defined above.

allData � �data1, data2, data3, data4�

��18.24, 12.12, 15.23, 5.26�,
�12.24, 19.16, 35.07, 23.46, �10.62, �7.43, 2.62, 10.42�,
�8.23, 8.96, 8.35, 9.16, 8.05�,
�8.12, 8.26, 8.34, 9.01, 9.11, 8.95, 7.29��

averages � Map�average, allData�

�12.7125, 10.615, 8.55, 8.44�

The elegance  of  these  constructs  is that  we never  need to know how long the lists  really are.  We can
keep  adding  or  deleting  elements  into  any  of  the  lists  and  the  process  will  keep  working.  Map  and
Apply functions are used so frequently in Mathematica programming that several short cuts have been
designed to make their use even more efficient.  One such useful technique is combining Map with the
function  definition  itself.  In  the  example  of  computation  of  averages,  we  had  to  define  a  function
(called average) and then apply it to elements of the list using Map. We can do exactly the same thing,
without explicitly defining the function, as follows.

averageReturns � Map�Apply�Plus, #� � Length�#� &, allData�

�12.7125, 10.615, 8.55, 8.44�
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We can see  that  the first  argument  is  exactly  the  definition  of  the function.  The #  sign  stands  for  the
function  argument.  The  ampersand  (&)  at  the  end  is  very  important.  It  essentially  tells  Mathematica
that we are defining a function as the first argument of Map.

The Thread function  is  similar  to Map as it  threads  a  function  over its  arguments.  The most  common
use of this function in the text has been to define rules for substitution into an expression.  Suppose we
have a function of 4 variables that we would like to evaluate at a given point. 

f � x1 �x2 � Sin�x3��Cos�x4�;
pt � �1.1, 2.23, 3.2, 4.556�;
vars � �x1, x2, x3, x4�;

A tedious way to evaluate f at the given point is as follows.

f �. �x1 �� 1.1, x2 �� 2.23, x3 �� 3.2, x4 �� 4.556�

2.46209

A more convenient way is to use Thread to define substitution rule.

Thread�vars �� pt�

�x1 � 1.1, x2 � 2.23, x3 � 3.2, x4 � 4.556�

f �. Thread�vars �� pt�

2.46209

Again the advantage of last form is clear. We don't have to change anything if the number of variables
is increased or decreased.

7. Packages in Mathematica
Mathematica  comes with a wide variety of special packages.  Among these are the Linear Algebra and
Graphics  Packages.  This  packages  provide additional  commands  for  manipulating  matrices  and plots.
Loading  the  matrix  manipulation  commands  from  the  LinearAlgebra  Package  and  Graphics:  Legend
packages is accomplished as follows:

Needs�"LinearAlgebra`MatrixManipulation`"�;
Needs�"Graphics`Legend`"�;

With Graphics`Legend we can show labels for different graphs on the same plot. For example 
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Plot��st, �20 �ri � 15� � 2� � �15 � ri��,
�ri, 5, 14�, AxesLabel �� �"ri", "Stress"�,
PlotStyle �� ��GrayLevel�0��, �GrayLevel�0.5���,

PlotLegend �� �"Thick", "Thin"�,
LegendPosition �� �1, 0��;
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The large of functions created for this text are included in the MinTools package. Specific instructions
for loading and using this package are included on the accompanying CD. 

8. On-Line Help
Mathematica  contains  a  complete  on-line  help  system.  The  Help  menu  provides  access  to  all
Mathematica  features.  In  fact  the  entire  Mathematica  3.0  book  is  on-line.  In  addition  you  can  obtain
information about any command by typing '?' followed by the command name. This form also supports
use of wild-cards. For example to get a listing of all commands that start with letter G type
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?G*

Gamma                         Generic                       
GraphicsSpacing
GammaRegularized              Get                           GrayLevel
GaussianIntegers              GetContext                    Greater
GaussKronrod                  GetLinebreakInformationPacket 
GreaterEqual
GaussPoints                   GoldenRatio                   
GridBaseline
GCD                           Goto                          GridBox
Gear                          Gradient                      
GridBoxOptions
GegenbauerC                   Graphics                      GridFrame
General                       Graphics3D                    GridLines
GenerateBitmapCaches          GraphicsArray                 
GroebnerBasis
GenerateConditions            GraphicsData                  
GroupPageBreakWithin
GeneratedCell

 Detailed instructions about a specific command can be obtained by typing ? followed by the command
name. For example

?GaussPoints

GaussPoints is an option for NIntegrate. With
GaussPoints �
 n, the Gaussian part of Gauss�Kronrod
quadrature uses n points. With GaussPoints �
 Automatic,
an internal algorithm chooses the number of points.
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Introduction to Mathematica 

Mathematica Exercises 
 
Prepare a Methematica notebook with solutions to the following problems. Put each solution in a separate 
section. Add your comments/description in text cells if needed. Display the matrices in the matrix form. 

 

1.1 Given a function 2

1
axx

xf
+

=)( ,  compute 
dx
df

at x=1.5 and ∫
2

1
fdx . 

1.2 Given a function 222

1
zyx

zyxf
++

=),,( , compute its gradient vector and the Hessian 

matrix. Evaluate these quantities at x=1, y=2 and z=3. Note that for a functional of n variables, the 
gradient and Hessian are defined as 
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1.3 Given a 3-by-1 vector Txxx )cos,sin,(   =a , obtain the 3-by-3 matrix resulting from dxTaa∫ . 

 
1.4 Consider the following system of homogeneous linear equations 
 

 

038
023

022
032

4321

4321

4321

4321

=+−−
=++−−

=+−+
=++−

xxxx
xxxx

xxxx
xxxx

 

Show that the system of equations is singular by computing the determinant of the coefficient matrix.  
 
1.5 For the system of equations given in problem 1.4, if 14 =x , then the first three equations are 
nonsingular. Compute the solution. 


