
Appendix

An Introduction to Mathematica

Mathematica is a powerful tool for performing both symbolic and numerical calculations. It is
available on all major computing platforms, including Macintosh, Windows and UNIX systems. The
notebook interface on all systems is very similar. A user normally enters commands in cells in a
notebook window and executes these commands to see the results appear in the same notebook.
Starting with version 3.0 of Mathematica, the notebook interface has become quite sophisticated. In
addition to Mathematica input and output, the notebooks can now contain graphics and typeset text,
including all mathematics symbols and complicated equations. The style of a cell determines whether it
contains live input and output or just text. Similar to a word processor, several other specialized cell
styles are available to create section headings, sub-headings, etc. A large number of pull-down menus
are available to manipulate information in different notebook cells.

Mathematica is a complex system and requires considerable practice to become proficient in its use.
However getting started with it and using it as an advanced calculator requires understanding of only a
few basic concepts and knowledge of few commands. This brief introduction is intended as a quick
start guide for the users of this text. Serious users should consult many excellent books on
Mathematica listed at the end of this chapter. Mathematica has excellent on-line help system as well.
This help system has usage instructions and examples of all Mathematica commands. The entire
Mathematica book is available on-line as well and is accessible through the help browser.

1. Basic manipulations in Mathematica
Mathematica performs a wide variety of numeric, graphic, and symbolic operations. Expressions are
entered using a syntax similar to that of common programming languages such as BASIC, FORTRAN,
or Pascal. Some of the operators available are: +[add], -[subtract], *[multiply], /[divide],
^[exponentiate], and Sqrt[] [square root]. The multiplication operator is optional between two
variables.

A command can be split into any number of lines. The Enter key (or Option-Return) on the keyboard
is used to actually execute the command line containing the insertion point (blinking vertical line).
Note on some keyboards the usual Return key (the one used to move to the next line) is labelled as
Enter. As far as Mathematica is concerned this is still a Return key. A semicolon [;] is used at the end
of a line of Mathematica input if no output is desired. This feature should be used freely to suppress
printout of long intermediate expressions that no one cares to look at anyway.

1 � 5 � 32 � 43 � 34^3

29650
����������������
4913

As seen from this example, Mathematica normally does rational arithmetic. To get numerical answer
the function 'N' can be used.

N�1 � 5 � 32 � 43 � 34^3�

6.03501

The N function (or any other function requiring a single argument) can also be applied using the //
operator as follows.

1 � 5 � 32 � 43 � 34^3 �� N

6.03501

Caution on Mathematica Input Syntax

 It is important to remember that Mathematica commands are case-sensitive. The built-in functions all
start with an uppercase letter. Also you must be very careful in using brackets. Different brackets have
different meaning. Arguments to functions must be enclosed in square brackets ([]). Curly braces ({})
are used to define lists and matrices. Parentheses '()' do not have any built-in function and therefore can
be used to group terms in expressions, if desired.

To indicate multiplication operation one can use either an asterisk (*) or simply one or more blank
space between the two variables. When a number precedes a variable even a blank is not necessary.
Sometimes this convention can lead to unexpected problems as demonstrated in the following
examples.

Suppose one wants product of variables a and b, a space is necessary between the two variables.
Without space Mathematica simply defines a new symbol "ab" and does not give the intended product.

a � 10; b � 3;
2�ab

2 ab

No space is needed between 2 and a but there must be a space or * between a and b to get the product
2�a b.

2

2�a b

60

If we enter 2a^3b without any spaces it is interpreted as 2 a3 b and not as 2�a3�b .

2�a^3�b

6000

In situations like these it is much better to use parentheses to make the association clear. For example
there is no ambiguity in the following form.

�2�a�^�3�b�

512000000000

Using built-in functions

Mathematica has a huge library of built-in functions. Few common ones are introduced here. The
functions 'Simplify' and 'Expand' are used to get expressions in simpler forms. Note the use of Clear to
remove any previously defined values for a.

Clear�a�;
Simplify�a2 � 3 a � �a � b� a�

a �3 � 2 a � b�

Expand�a2 � 3 a � �a � b� a�

3 a � 2 a2 � a b

Just like a programming language we can assign names to expressions so that they can be referred to
later. For example we define an expression e1 as follows.

e1 � x � Sin�x� Cos�x^3� � Exp�x�

x � E�x Cos�x3� Sin�x�

With this definition the expression on the right-hand side of the equal sign can be manipulated easily.
For example it can be differentiated with respect to x as follows. For later reference the derivative
expression is denoted by de1.

Mathematica Introduction.nb 3

de1 � D�e1, x�

1 � E�x Cos�x� Cos�x3� � E�x Cos�x3� Sin�x� � 3 E�x x2 Sin�x� Sin�x3�

We can integrate de1 as follows.

Integrate�de1, x�

1
����
2
�2 x � E�x Sin�x � x3� � E�x Sin�x � x3��

This does not look like e1. But the following expansion, using the trigonometric identities, shows that
it is indeed equal to e1. Note the use of '%' symbol to refer to the result of previous evaluation as a
short cut.

Expand�%, Trig �� True�

1
����
2
�2 x � 2 E�x Cos�x3� Sin�x��

Note that % refers to result of the previous evaluation and not the result appearing in the cell just above
the current cell. In a notebook with many input cells one can execute any cell simply by highlighting it
(or placing the insertion point anywhere in the cell). The % will always refer to the most recent
evaluation. In fact the evaluation does not have to be in the current notebook and can be in any other
notebook open at the same time. Therefore the use of % as a shortcut is strongly discouraged. It is
better to assign a variable to refer to an evaluation in other places.

Mathematica can also compute definite integrals involving complicated expressions using numerical
integration.

NIntegrate�e1, �x, 0, 1��

0.724231

Substitution rule

The symbol '/.' (slash-period) is a useful operator and is used to substitute different variables or
numerical values into existing expressions. For example expression e1 can be evaluated at x � 1.5 as
follows.

e1 /. x->1.5

1.28346

4

The arrow symbol is a combination of hyphen(-) and greater than sign (>) and is known as 'rule' in
Mathematica. Of course more complicated substitutions are possible. The following example
illustrates defining a new expression called e2 by substituting x � a � Sin�b� in expression e1.

e2 = e1 /. {x->a + Sin[b]}

10 � Sin�3� � E�10�Sin�3� Cos��10 � Sin�3��3� Sin�10 � Sin�3��

Substitute a � 1 and b � 2 in expression e2.

e2 /. {a->1, b->2}

1 � Sin�2� � E�10�Sin�2� Cos��1 � Sin�2��2� Sin�1 � Sin�2��

To get numerical result after substituting a � 1 and b � 2 in expression e2 we can use N function

N[e2 /. {a->1, b->2}]

1.90928

Note that the same result can also be obtained as follows.

a = 1;
b = 2;
N[e2, 10]

10.14109419

However the substitution form is much more desirable. This second form defines the symbols a and b
to have the indicated numerical values. Mathematica will automatically substitute these values into any
subsequent evaluation that involves a and b.

a + b x

1 � 2 x

The only way to later get symbolic expressions involving a and b would be to explicitly clear these
variables as follows.

Clear[a, b];
a + b x

a � b x

Mathematica Introduction.nb 5

2. Lists and Matrices
List are quantities enclosed in curly brackets ({}). They are one of the basic data structures used by
Mathematica. Many Mathematica functions expect arguments in the form of lists and return results as
lists. When working with these functions, it is important to pay close attention to the nesting of braces.
Two expressions, that otherwise are identical, except that one is enclosed in single set of braces and the
other in double braces means two entirely different things to Mathematica. Beginners often don't pay
close attention to braces and get frustrated when Mathematica does not do what they think it should be
doing.

Lists

Here is an example of a one dimensional list with 6 elements.

s � �1, 3, Sin�bb�, 2 � x, 5, �3 � y� � x^3�

�1, 3, Sin�bb�, 2 x, 5,
3 y
��������
x3
�

The Length function gives the number of elements in a list.

Length�s�

6

We can extract elements of a list by enclosing the element indices in double square brackets. For
example to get elements 3, 4, and 6 from s we use

ss � s���3, 4, 6���

�Sin�bb�, 2 x,
3 y
��������
x3
�

Most standard algebraic operations can be applied to all elements of a list. For example to differentiate
all elements of a list by x, we simply need to use D function on the list.

D�ss, x�

�0, 2, �
9 y
��������
x4
�

6

Multidimensional lists can be defined in a similar way. Here is an example of a two dimensional list
with first row having one element, second row three elements and the third row as the s list defined
above.

a � ��1�, �2, 3, 4�, s�

��1�, �2, 3, 4�, �1, 3, Sin�bb�, 2 x, 5,
3 y
��������
x3
��

Length�a�

3

Elements of a lists can be extracted by specifying row number and the element number within each
row in pairs of square brackets. For example, to get the second row of list a we use the following
structure.

a��2��

�2, 3, 4�

To get the sixth element of the third row of list a we use the following structure.

a��3, 6��

3 y
��������
x3

Obviously Mathematica will generate an error message if one tries to get an element that is not defined
in a list. For example trying to get the fourth element from the second row will produce the following
result.

a��2, 4��

Part::partw : Part 4 of �2, 3, 4� does not exist.

��1�, �2, 3, 4�, �1, 3, Sin�bb�, 2 x, 5,
3 y
��������
x3
��	2, 4

Sometimes it is necessary to change the structure of a list. Flatten and Partition functions are
simple ways to achieve this. Flatten removes all internal braces and converts any multidimensional list
into a single flat list, keeping the order same as that in the original list. For example we can define a
new one dimensional list b by flattening list a as follows.

Mathematica Introduction.nb 7

b � Flatten�a�

�1, 2, 3, 4, 1, 3, Sin�bb�, 2 x, 5,
3 y
��������
x3
�

Using Partition we can create partitions (row structure) in a given list. The second argument of
Partition specifies number of elements in each row. Extra elements that do not define a complete row
are ignored.

Partition�b, 3�

��1, 2, 3�, �4, 1, 3�, �Sin�bb�, 2 x, 5��

Partition�b, 4�

��1, 2, 3, 4�, �1, 3, Sin�bb�, 2 x��

Matrices

Matrices are special two dimensional lists in which each row has exactly the same number of elements.
Here we define a 3x4 matrix m.

m = {{1,2,3,4},{5,6,7,8},{9,10,11,12}}

��1, 2, 3, 4�, �5, 6, 7, 8�, �9, 10, 11, 12��

To see the result displayed in a conventional matrix form we use MatrixForm.

MatrixForm�m�

�

�

1 2 3 4

5 6 7 8

9 10 11 12

�

�

�������

TableForm is another way of displaying multi-dimensional lists.

TableForm�m�

1 2 3 4

5 6 7 8

9 10 11 12

8

The following two dimensional list is not a valid matrix because number of elements in each row is not
the same. However there is no error message produced because it is still a valid list in Mathematica.

a � ��1�, �2, 3�, �4, 5, 6��

��1�, �2, 3�, �4, 5, 6��

MatrixForm�a�

�

�

�1�
�2, 3�
�4, 5, 6�

�

�

�������

Once a matrix is defined, standard matrix operations can be performed on it. For example we can
define a new matrix mt as Transpose of m.

mt � Transpose�m�; MatrixForm�mt�

�

�

1 5 9

2 6 10

3 7 11

4 8 12

�

�

������������

Matrices can be multiplied by using . (period) between their names.

MatrixForm�mt.m�

�

�

107 122 137 152

122 140 158 176

137 158 179 200

152 176 200 224

�

�

������������

Using * or blank will produce an error or simply element by element multiplication.

mt � m

Thread::tdlen : Objects of unequal length
in ��1, 5, 9�, �2, 6, 10�, �3, 7, 11�, �4, 8, 12��
��1, 2, 3, 4�, �5, 6, 7, 8�, �9, 10, 11, 12�� cannot be combined.

��1, 2, 3, 4�, �5, 6, 7, 8�, �9, 10, 11, 12��
��1, 5, 9�, �2, 6, 10�, �3, 7, 11�, �4, 8, 12��

Here we get an element by element product and not the matrix product.

Mathematica Introduction.nb 9

mt � mt

��1, 25, 81�, �4, 36, 100�, �9, 49, 121�, �16, 64, 144��

When using MatrixForm, it is very important to note that the MatrixForm is used for display purposes
only. If a matrix is defined with the MatrixForm in it, that matrix definition cannot be used in any
subsequent calculation. For example, consider the following definition of matrix 'm' used previously.

m � MatrixForm���1, 2, 3, 4�, �5, 6, 7, 8�, �9, 10, 11, 12���

�

�

1 2 3 4

5 6 7 8

9 10 11 12

�

�

�������

The output looks exactly like it did in the earlier case. However we cannot perform any operations on
matrix m in this form. For example using Transpose function on m simply returns the initial matrix m
wrapped in Transpose.

Transpose�m�

Transpose�
�

�

1 2 3 4

5 6 7 8

9 10 11 12

�

�

��������

The solution obviously is not to use the MatrixForm in the definition of matrices. After the definition
we can use the MatrixForm to get a nice looking display.

m � ��1, 2, 3, 4�, �5, 6, 7, 8�, �9, 10, 11, 12��; MatrixForm�m�

�

�

1 2 3 4

5 6 7 8

9 10 11 12

�

�

�������

Elements of matrices can be extracted using the double square brackets. For example, the second row
of m can be extracted as follows.

m2 = m[[2]]

�5, 6, 7, 8�

The element in the 2nd row and the 4th column is

10

m[[2, 4]]

8

Extracting a column is little more difficult. The simplest way is to transpose the matrix and then take
its desired row (which obviously corresponds to the original column). For example the second column
of matrix m is extracted as follows.

c2 = Transpose[m][[2]]

�2, 6, 10�

Matrices can also be defined in terms of symbolic expressions. For example here is a 2x2 matrix called
m.

m = {{y, 2*x}, {(3*y)/x^3, 4*y}}; MatrixForm[m]

�
�

y 2 x
3 y������x3 4 y

�
�
���

Determinant of m

Det[m]

�
6 y
��������
x2

� 4 y2

Inverse of m

mi = Inverse[m]; MatrixForm[mi]

�

�

4 y������������������
� 6 y�������

x2
�4 y2

� 2 x������������������
� 6 y�������

x2
�4 y2

� 3 y��������������������������
x3 �� 6 y�������

x2
�4 y2�

y������������������
� 6 y�������

x2
�4 y2

�

�

�������

Check the inverse

MatrixForm[Simplify[mi.m]]

� 1 0

0 1
�

Operations, such as differentiation and integration, are performed on each element of a matrix.

Mathematica Introduction.nb 11

D[m,y]//MatrixForm

�
�

1 0
3�����x3 4

�
�
���

Integrate[m,x]//MatrixForm

�
�

x y x2

� 3 y��������2 x2 4 x y

�
�
����

Generating lists with Table function

The Table function is a handy tool to generate lists or matrices with a systematic pattern. For example
to generate a 3x5 matrix with all entries as zero we use the following form.

m � Table�0, �3�, �5��; MatrixForm�m�

�

�

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

�

�

�������

The first argument to Table function can be any expression. Here is a 3x4 matrix whose entries are
equal to the sum of row and column indices divided by 3^(column index).

z � Table��i � j� � 3^j, �i, 1, 3�, �j, 1, 4��; MatrixForm�z�

�

�

2���3
1���3

4�����27
5�����81

1 4���9
5�����27

2�����27

4���3
5���9

2���9
7�����81

�

�

�����������

Using the If command we can construct complicated matrices. For example here is a 4x4 upper
triangular matrix.

z � Table�If�i � j, 0, �i � j� � 3^j�, �i, 1, 4�, �j, 1, 4��; MatrixForm�z�

�

�

2���3
1���3

4�����27
5�����81

0 4���9
5�����27

2�����27

0 0 2���9
7�����81

0 0 0 8�����81

�

�

�����������������

Note the syntax of If command is as follows.

12

If�test, Statements to be executed if test is True, Statements to be executed if test is False�

Caution when dealing with row and column vectors

Since Mathematica treats matrices as essentially lists, it does not distinguish between a column or a
row vector. The actual form is determined from syntax in which it is used. For example define two
vectors a and b as follows.

a = {1, 2, 3}; b = {4, 5, 6};

Matrix inner product (Transpose[a] . b) is evaluated simply as a . b, resulting in a scalar. Explicitly
evaluating Transpose[a]. b will produce an error.

a . b

32

Transpose[a] . b

Transpose::nmtx : The first two levels of the
one�dimensional list �1, 2, 3� cannot be transposed.

Transpose��1, 2, 3��.�4, 5, 6�

If we want to treat a as a column vector (3 x 1) and b as a row vector (1 x 3) to get a 3x3 matrix from
the product, we need to use Outer function of Mathematica as follows.

ab = Outer[Times, a, b]; MatrixForm[ab]

�

�

4 5 6

8 10 12

12 15 18

�

�

�������

Another way to explicitly define a 3x1 column vector is to enter it as a two dimensional list. Here each
entry defines a row of a matrix with one column.

a = {{1}, {2}, {3}}; MatrixForm[a]

�

�

1

2

3

�

�

�������

Now Transpose[a] . b makes sense. However the result is 1x1 matrix and not a scalar.

Mathematica Introduction.nb 13

Transpose[a] . b

�32�

Obviously now a . b will produce an error because the dimensions do not match.

a . b

Dot::dotsh :
Tensors ��1�, �2�, �3�� and �4, 5, 6� have incompatible shapes.

��1�, �2�, �3��.�4, 5, 6�

To get a 3x3 matrix we need to define b as a two dimensional matrix with only one row as follows.

b = {{4, 5, 6}}

��4, 5, 6��

Now a (3x1) . b (1x3) can be evaluated directly, as one would expect.

MatrixForm[a . b]

�

�

4 5 6

8 10 12

12 15 18

�

�

�������

3. Solving equations
An equation in Mathematica is defined as an expression with two parts separated by two equal signs
(==, with out any spaces between the two signs). Thus the following is an equation.

x^3 � 3 �� 0

�3 � x3 �� 0

Note you get the following strange looking error message if you try to define an equation with a single
equal sign. (The error message makes sense if you know more details of how Mathematica handles
expressions internally.)

14

x^3 � 3 � 0

Set::write : Tag Plus in �3 � x3 is Protected.

0

Equations can also be assigned to variables for later reference. For example we can call the above
equation as eq so that we can refer to it in other computations.

eq = x^3 - 3 == 0

�3 � x3 �� 0

A single equation, or a systems of equations, can be solved using the Solve command.

sol � Solve�eq, x�

��x � ���3�1�3�, �x � 31�3�, �x � ��1�2�3 31�3��

Note the solution is returned in the form of a two dimensional list of substitution 'rules'. Because of
this form we can substitute any solution into another expression if desired. For example we can
substitute the second solution back into the equation to verify that the solution is correct, as follows.

eq /. sol[[2]]

True

The 'Solve' command tries to find all possible solutions using symbolic manipulations. If a numerical
solution is desired the 'NSolve' command is usually much faster.

NSolve[x^3 - 3 == 0, x]

��x � �0.721125 � 1.24902 I�, �x � �0.721125 � 1.24902 I�, �x � 1.44225��

Both Solve and NSolve commands can be used for systems of linear or nonlinear equations.

eqn1 = x + 2y + 3z == 41;
eqn2 = 5x + 5y + 4z == 20;
eqn3 = 3y + 4z == 125;
sol = Solve[{eqn1, eqn2, eqn3}, {x, y, z}]

��x � �
527
����������
13

, y �
635
����������
13

, z � �
70
�������
13
��

Mathematica Introduction.nb 15

Notice that even when there is only one solution, the result is a two dimensional list. If we want to
evaluate a given function at this solution point, we still need to extract the first element of this list. For
example

a � N�Sin�x y��Cos�yz� �. sol��1���

�0.810238

The following substitution produces the same result but in the form of a list whose structure must be
kept in mind if it is to be used in other expressions.

b � N�Sin�x y��Cos�yz� �. sol�

��0.810238�

For example, since a is a scalar as defined by the first form, it can be used in any matrix operation.
However b can only used with appropriate sized matrices.

a �a1, a2, a3�

��0.810238 a1, �0.810238 a2, �0.810238 a3�

b �a1, a2, a3�

Thread::tdlen : Objects of unequal
length in ��0.810238� �a1, a2, a3� cannot be combined.

��0.810238� �a1, a2, a3�

A linear system of equations, written in matrix form as K d = R, can be solved very efficiently using
the LinearSolve[K, R] command as follows.

K � ��2, 4, 6�, �7, 9, 2�, �1, 2, 13��;
R � �1, 2, 3�;
LinearSolve�K, R�

� 21�������
20

, �
13
�������
20

,
1
����
4
�

16

4. Plotting in Mathematica
Mathematica supports both 2-dimensional and 3-dimensional graphics. The Plot command provides
support for 2-dimensional graphs of one or more functions specified as expressions, or functions. The
following shows plot of an expression in the interval from -2 to 2.

p1 = Plot[Sin[x] Cos[x]/(1+x^2),{x,-2,2}];

-2 -1 1 2

-0.3

-0.2

-0.1

0.1

0.2

0.3

Multiple plots can be shown on the same graph using the 'Show' command. The following example
plots expression e1 and its first derivative. Each plot command automatically displays resulting graph.
For multiple plots, usually the final plot showing all graphs superimposed, is of interest. Using
DisplayFunction as Identity, suppresses display of intermediate plots.

de1 = D[Sin[x] Cos[x]/(1+x^2),x];
p2 = Plot[de1,{x,-2,2}, PlotStyle->{RGBColor[0,0,1]},

DisplayFunction -> Identity];
Show[{p1,p2}];

-2 -1 1 2

-0.4

-0.2

0.2

0.4

0.6

0.8

1

Mathematica Introduction.nb 17

The RGBColor function returns a combination color by mixing specified amounts of Red, Green and
Blue colors. In the example the Blue component is set to 1 and others to 0 to get a blue color. Use
Mathematica on-line help to explore many other plot options.

Note before generating the plot for the derivative we defined a new expression and then used it in the
plot function. If we had actually used the derivative operation inside the argument of the Plot function,
we would get a series of strange error messages as follows.

Plot[D[Sin[x] Cos[x]/(1+x^2),x],{x,-2,2}];

General::ivar : �2. is not a valid variable.

General::ivar : �2. is not a valid variable.

General::ivar : �2. is not a valid variable.

General::stop : Further output of
General::ivar will be suppressed during this calculation.

Plot::plnr :

�x
Sin�x� Cos�x�
�������������������������������������

1 � x2
is not a machine�size real number at x � �2..

Plot::plnr :

�x
Sin�x� Cos�x�
�������������������������������������

1 � x2
is not a machine�size real number at x � �1.83773.

Plot::plnr :

�x
Sin�x� Cos�x�
�������������������������������������

1 � x2
is not a machine�size real number at x � �1.66076.

General::stop : Further output of
Plot::plnr will be suppressed during this calculation.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

The reason for the error is that Plot and several other built-in functions (for valid reasons but difficult
to explain here) do not evaluate their arguments. We can force them to evaluate the arguments by
enclosing the computation inside Evaluate as follows.

18

Plot[Evaluate[D[Sin[x] Cos[x]/(1+x^2),x]],{x,-2,2}];

-2 -1 1 2

-0.4

-0.2

0.2

0.4

0.6

0.8

1

Functions of two variables can be shown either as contour plots or as three dimensional surface plots.

f � Sin�x��Cos�y�

Cos�y� Sin�x�

ContourPlot�f, �x, �Π, Π�, �y, �Π, Π�, PlotPoints �� 50�;

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Mathematica Introduction.nb 19

Plot3D�f, �x, �Π, Π�, �y, �Π, Π��;

-2

0

2

-2

0

2

-1

-0.5

0

0.5

1

-2

0

2

5. Differential Equations
A variety of ordinary differential equations can be solved using DSolve command. If successful this
function returns an analytical expression for solution of the differential equation.The function also can
solve a limited number of boundary value problems. The function an solve a single equation or a
system of ordinary differential equations. Initial and boundary conditions can be specified as part of
these equations.

? DSolve

DSolve�eqn, y, x� solves a differential equation for the function
y, with independent variable x. DSolve��eqn1, eqn2, ... �, �y1,
y2, ... �, x� solves a list of differential equations. DSolve�
eqn, y, �x1, x2, ... �� solves a partial differential equation.

As an example we evaluate solution of the following boundary value problem.

d2 �u����������
dx2 � u � x � 0 1 � x � 3

u�1� � 2 du�������dx ��3� � 0

sol � DSolve��D�u�x�, �x, 2�� � u�x� � x �� 0,
u�1� �� 2, �D�u�x�, x� �. x �� 3� �� 0�, u�x�, x�

��u�x� � �x � Cos�x� Sec�2� �3 Cos�3� � Sin�1�� �
Sec�2� �Cos�1� � 3 Sin�3�� Sin�x���

20

We can verify the solution by substituting the solution into the differential equation as follows.

ux � u�x� �. sol��1��

�x � Cos�x� Sec�2� �3 Cos�3� � Sin�1�� � Sec�2� �Cos�1� � 3 Sin�3�� Sin�x�

D�ux, �x, 2�� � ux � x

0

The solution can also be plotted as follows.

Plot�ux, �x, 1, 3��;

1.5 2 2.5 3

-12

-10

-8

-6

-4

-2

2

The first derivative of the solution can also be plotted as follows.

Plot�Evaluate�D�ux, x��, �x, 1, 3��;

1.5 2 2.5 3

-10

-8

-6

-4

-2

Mathematica Introduction.nb 21

For more complicated differential equation, an analytical solution may not be possible. In these
situation NDSolve can be used to give an approximate numerical solution. This function returns
solution in the form an cubic interpolation function. This solution can be plotted using Plot,
differentiated using D, and integrated using Integrate, just like a ordinary function.

? NDSolve

NDSolve�eqns, y, �x, xmin, xmax�� finds a numerical solution to
the ordinary differential equations eqns for the function
y with the independent variable x in the range xmin to
xmax. NDSolve�eqns, y, �x, xmin, xmax�, �t, tmin, tmax��
finds a numerical solution to the partial differential
equations eqns. NDSolve�eqns, �y1, y2, ... �, �x, xmin,
xmax�� finds numerical solutions for the functions yi.

As an example we evaluate solution of the following boundary value problem.

x� d2 �u����������
dx2 � u � x � 0 u�1� � 2 du�������dx ��3� � 0

As seen in the following, the DSolve cannot find the solution to this problem.

DSolve��x D�u�x�, �x, 2�� � u�x� � x �� 0,
u�1� �� 2, �D�u�x�, x� �. x �� 3� �� 0�, u�x�, x�

DSolve��x � u�x� � x u���x� �� 0, u�1� �� 2, u��3� �� 0�, u�x�, x�

Using NDSolve we can obtain a numerical solution as follows.

sol � NDSolve��x D�u�x�, �x, 2�� � u�x� � x �� 0,
u�1� �� 2, �D�u�x�, x� �. x �� 3� �� 0�, u�x�, �x, 1, 3��

��u�x� � InterpolatingFunction���1., 3.��, 	
��x���

The solution can also be plotted as follows.

22

Plot�u�x� �. sol��1��, �x, 1, 3��;

1.5 2 2.5 3

2

4

6

8

10

12

14

The first derivative of the solution can also be plotted as follows.

Plot�Evaluate�D��u�x� �. sol��1���, x��, �x, 1, 3��;

1.5 2 2.5 3

2

4

6

8

10

12

6. Programming in Mathematica

Defining new functions

For calculations that involve many steps using interactive approach may become tedious. Mathematica
offers a rich and sophisticated programming environment to create functions that perform complex
series of computations.

The general syntax of the function definition is as follows.

newFunctionName[var1_, var2_, ...] := Module[

{localVar1, localVar2, …},

Mathematica Introduction.nb 23

statement 1;
statement 2;

�

last statement
]

The newFunctionName can be any name that the user wants. Since all built-in functions start with an
upper-case letter, it may be a good idea to start your functions with a lower case letter to avoid any
conflict with built-in functions. All needed variables for the function are enclosed in square brackets.
For reasons beyond the scope of this introductory tutorial, an underscore must be appended to all
names in the variable list. The definition of the function starts with := followed by the word 'Module'
and opening square bracket. The first line in the definition is a list of local variables that are to be used
only inside the body of the function. Outside of the function these variables do not exist. The list of
local variables ends with a comma. The remainder of the function body can contain as many
statements as needed to achieve the goal of the function. Each statement ends with a semi-colon. The
last statement does not have a semi-colon and is the one that is returned by the function when it is
used. The end of the function is indicated by the closing square bracket.

Simple one line functions, that do not need any local variables, can be defined simply as follows.

oneLineFcn[var1_, var2_, ...] := expression involving vars

An example of a one line function is presented in the next section. As an example of Module we define
the following function to return stresses in thick-walled cylinders. The tangential and radial stresses in
an open-ended thick cylinder are given by the following formulas.

Σt � pi �ri
2

��������������
r0

2 �ri
2 ��1 � r0

2

������r2 � Σr � pi �ri
2

��������������
r0

2 �ri
2 ��1 � r0

2

������r2 �

where pi is internal pressure on the cylinder, ri and r0 are inner and outer radii and r is radius of the
point where the stress is desired.

thickCylinderStresses[pi_, ri_, r0_, r_] :=
 Module[{c1, c2, Σt, Σr},
 c1=pi ri^2/(r0^2 - ri^2);
 c2=r0^2/r^2;
 Σt=c1(1+c2);
 Σr=c1(1-c2);
 {Σt, Σr}
]

After entering the function definition, the input must be executed to actually tell Mathematica about
the new function. Unless there is an error, the execution of the function definition line does not
produce any output. After this the function can be used as any other Mathematica function. For
example we can compute stresses in a cylinder with pi = 20, ri = 5, r0 = 15 and r = 10 as follows.

24

thickCylinderStresses�20, 5, 15, 10�

� 65�������
8

, �
25
�������
8
�

Leaving some variables in symbolic form we can get symbolic results.

�st, sr� � thickCylinderStresses�20, 5, 15, r�

� 5����
2
�1 �

225
����������
r2
�, 5

����
2
�1 �

225
����������
r2
��

These expression can be plotted to see the stress distribution through the cylinder wall.

Plot��st, sr�, �r, 5, 15�, AxesLabel �� �"r", "Stress"�,
PlotStyle �� ��GrayLevel�0��, �GrayLevel�0.5����;

8 10 12 14 r

-20

-10

10

20

Stress

A natural question might be to see what happens to the stresses as the cylinder becomes "thin"? This
question can be answered by evaluating the stresses at center of wall thickness as a function of inner
radius as follows.

�st, sr� � thickCylinderStresses�20, ri, 15, �ri � 15� � 2�

�
20 ri2 �1 � 900������������������15�ri�2 ���

225 � ri2
,

20 ri2 �1 � 900������������������15�ri�2 ���
225 � ri2

�

A plot of these expressions is as follows.

Mathematica Introduction.nb 25

Plot��st, sr�, �ri, 5, 14�, AxesLabel �� �"ri", "Stress"�,
PlotStyle �� ��GrayLevel�0.5��, �GrayLevel�0����;

8 10 12 14 ri

50

100

150

Stress

We can see that Σt becomes predominant stress as the wall becomes thin. The usual approximation for
thin walled cylinders is Σt � pi �r���������t . We can graphically see how this approximation compares with the
thick cylinder solution as follows.

Plot��st, �20 �ri � 15� � 2� � �15 � ri��,
�ri, 5, 14�, AxesLabel �� �"ri", "Stress"�,
PlotStyle �� ��GrayLevel�0��, �GrayLevel�0.5����;

8 10 12 14 ri

50

100

150

200

250

Stress

26

Use of Map, Apply, and Thread

Frequently we need to perform operations on a list of functions or variables. Many built-in functions
are designed to operate on lists directly. However there are still many situations where it is necessary
to perform some operation on a list of quantities. In traditional programming language, we typically
perform these operations using a Do loop or an equivalent. Mathematica has a Do loop that can be
used in a similar way. However it also offers many other elegant and more convenient ways of doing
the same thing. Map, Thread and Apply are three of these handy functions. These functions have been
used in several examples in this text.

Suppose we are given the following data that we have entered as lists in Mathematica.

data1 � �18.24, 12.12, 15.23, 5.26�;
data2 � �12.24, 19.16, 35.07, 23.46, �10.62, �7.43, 2.62, 10.42�;
data3 � �8.23, 8.96, 8.35, 9.16, 8.05�;
data4 � �8.12, 8.26, 8.34, 9.01, 9.11, 8.95, 7.29�;

We want to compute average of data. The computation is fairly simple. We simply need to add all
entries in a data list and divide them by the number of entries. Computation of sum or multiplication of
all elements of a list is done very conveniently by using Apply. It does not matter how long the list is
or whether it consists of numerical or symbolic quantities.

Apply�Plus, data1�

50.85

The first argument of Apply is the function to be applied and the second is the list of items.
Multiplication of all elements can be computed in exactly the same way.

Apply�Times, data1�

17709.8

Obviously the function to be applied must expect a list as its argument. For example applying Sin
function to a list will not produce any useful result.

Apply�Sin, data1�

Sin::argx : Sin called with 4 arguments; 1 argument is expected.

Sin�18.24, 12.12, 15.23, 5.26�

The Map function is similar to Apply, but it applies a function to each element of a list. For example if
we want to compute Sin of each term in data1 list, we can do it as follows.

Mathematica Introduction.nb 27

Map�Sin, data1�

��0.572503, �0.431695, 0.459972, �0.853771�

To compute the average all we need to now is to divide the sum by the number of entries in the list.
The Length function, described earlier, does exactly this. Thus the following one line program can
compute average of any list.

average�n_� :� Apply�Plus, n� � Length�n�

average�data1�

12.7125

To compute average of all different data lists, we can use the average function repeatedly on the other
lists. However it is much more convenient to define a new list of all data and simply Map average
function to each element of this list. We first define a new list and then use the average function
defined above.

allData � �data1, data2, data3, data4�

��18.24, 12.12, 15.23, 5.26�,
�12.24, 19.16, 35.07, 23.46, �10.62, �7.43, 2.62, 10.42�,
�8.23, 8.96, 8.35, 9.16, 8.05�,
�8.12, 8.26, 8.34, 9.01, 9.11, 8.95, 7.29��

averages � Map�average, allData�

�12.7125, 10.615, 8.55, 8.44�

The elegance of these constructs is that we never need to know how long the lists really are. We can
keep adding or deleting elements into any of the lists and the process will keep working. Map and
Apply functions are used so frequently in Mathematica programming that several short cuts have been
designed to make their use even more efficient. One such useful technique is combining Map with the
function definition itself. In the example of computation of averages, we had to define a function
(called average) and then apply it to elements of the list using Map. We can do exactly the same thing,
without explicitly defining the function, as follows.

averageReturns � Map�Apply�Plus, #� � Length�#� &, allData�

�12.7125, 10.615, 8.55, 8.44�

28

We can see that the first argument is exactly the definition of the function. The # sign stands for the
function argument. The ampersand (&) at the end is very important. It essentially tells Mathematica
that we are defining a function as the first argument of Map.

The Thread function is similar to Map as it threads a function over its arguments. The most common
use of this function in the text has been to define rules for substitution into an expression. Suppose we
have a function of 4 variables that we would like to evaluate at a given point.

f � x1 �x2 � Sin�x3��Cos�x4�;
pt � �1.1, 2.23, 3.2, 4.556�;
vars � �x1, x2, x3, x4�;

A tedious way to evaluate f at the given point is as follows.

f �. �x1 �� 1.1, x2 �� 2.23, x3 �� 3.2, x4 �� 4.556�

2.46209

A more convenient way is to use Thread to define substitution rule.

Thread�vars �� pt�

�x1 � 1.1, x2 � 2.23, x3 � 3.2, x4 � 4.556�

f �. Thread�vars �� pt�

2.46209

Again the advantage of last form is clear. We don't have to change anything if the number of variables
is increased or decreased.

7. Packages in Mathematica
Mathematica comes with a wide variety of special packages. Among these are the Linear Algebra and
Graphics Packages. This packages provide additional commands for manipulating matrices and plots.
Loading the matrix manipulation commands from the LinearAlgebra Package and Graphics: Legend
packages is accomplished as follows:

Needs�"LinearAlgebra`MatrixManipulation`"�;
Needs�"Graphics`Legend`"�;

With Graphics`Legend we can show labels for different graphs on the same plot. For example

Mathematica Introduction.nb 29

Plot��st, �20 �ri � 15� � 2� � �15 � ri��,
�ri, 5, 14�, AxesLabel �� �"ri", "Stress"�,
PlotStyle �� ��GrayLevel�0��, �GrayLevel�0.5���,

PlotLegend �� �"Thick", "Thin"�,
LegendPosition �� �1, 0��;

8 10 12 14 ri

50

100

150

200

250

Stress

Thin

Thick

The large of functions created for this text are included in the MinTools package. Specific instructions
for loading and using this package are included on the accompanying CD.

8. On-Line Help
Mathematica contains a complete on-line help system. The Help menu provides access to all
Mathematica features. In fact the entire Mathematica 3.0 book is on-line. In addition you can obtain
information about any command by typing '?' followed by the command name. This form also supports
use of wild-cards. For example to get a listing of all commands that start with letter G type

30

?G*

Gamma Generic
GraphicsSpacing
GammaRegularized Get GrayLevel
GaussianIntegers GetContext Greater
GaussKronrod GetLinebreakInformationPacket
GreaterEqual
GaussPoints GoldenRatio
GridBaseline
GCD Goto GridBox
Gear Gradient
GridBoxOptions
GegenbauerC Graphics GridFrame
General Graphics3D GridLines
GenerateBitmapCaches GraphicsArray
GroebnerBasis
GenerateConditions GraphicsData
GroupPageBreakWithin
GeneratedCell

 Detailed instructions about a specific command can be obtained by typing ? followed by the command
name. For example

?GaussPoints

GaussPoints is an option for NIntegrate. With
GaussPoints �
 n, the Gaussian part of Gauss�Kronrod
quadrature uses n points. With GaussPoints �
 Automatic,
an internal algorithm chooses the number of points.

Bibliography

1.
Wolfram, S., The Mathematica Book, 3rd Edition, Wolfram Media/Cambridge University Press,
Boston, MA, 1996.

2.
Wickham-Jones, T., Mathematica Graphics: Techniques and Applications, TELOS (Springer-
Verlag), Santa Clara, CA, 1994.

3.
Maeder, R., Programming in Mathematica, 3rd Edition, Addison-Wesley, Redwood City, CA,
1997.

4.
Shaw, W.T. and Tigg, J., Applied Mathematica: Getting Started, Getting It Done, Addison-
Wesley, Reading, MA, 1994.

5. Gray, J.W., Mastering Mathematica, AP Professional, Cambridge, MA, 1994.

6. Wagner, D.B., Power Programming with Mathematica, McGraw-Hill, New York, NY, 1996.

7.
Abel, M.L. and Braselton, J.P., Mathematica By Example, Academic Press, San Diego, CA,
1997.

Mathematica Introduction.nb 31

8.
Gray, Theodore and Glynn, Jerry, A Beginners Guide to Mathematica, Version 2, Addison-
Wesley, Reading, MA, 1992.

9. Bahder, T., Mathematica for Scientists and Engineers, Addison-Wesley, Reading, MA, 1995.

32

Introduction to Mathematica

Mathematica Exercises

Prepare a Methematica notebook with solutions to the following problems. Put each solution in a separate
section. Add your comments/description in text cells if needed. Display the matrices in the matrix form.

1.1 Given a function 2

1
axx

xf
+

=)(, compute
dx
df

at x=1.5 and ∫
2

1
fdx .

1.2 Given a function 222

1
zyx

zyxf
++

=),,(, compute its gradient vector and the Hessian

matrix. Evaluate these quantities at x=1, y=2 and z=3. Note that for a functional of n variables, the
gradient and Hessian are defined as

 Gradient vector

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∂
∂

∂
∂

=∇

nx
f

x
f

f M
1

)(x

 Hessian matrix

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

∂
∂

=∇

2

2

2

2

1

2

2

2

2
2

2

12

2
1

2

21

2

2
1

2

2

nnn

n

n

x
f

xx
f

xx
f

xx
f

x
f

xx
f

xx
f

xx
f

x
f

f
MMMM

L

L

)(x

1.3 Given a 3-by-1 vector Txxx)cos,sin,(=a , obtain the 3-by-3 matrix resulting from dxTaa∫ .

1.4 Consider the following system of homogeneous linear equations

038
023

022
032

4321

4321

4321

4321

=+−−
=++−−

=+−+
=++−

xxxx
xxxx

xxxx
xxxx

Show that the system of equations is singular by computing the determinant of the coefficient matrix.

1.5 For the system of equations given in problem 1.4, if 14 =x , then the first three equations are
nonsingular. Compute the solution.

