Q1. Using FEM, determine the end deflection of a steel cantilever beam shown in Figure 1. Assume the modulus of elasticity is $E=29 e^{6}$ psi.

The stiffness matrix for the beam element is :-

$$
\begin{gathered}
\mathbf{k}=\frac{E I}{L^{3}}\left[\begin{array}{cccc}
v_{1} & \theta_{1} & v_{2} & \theta_{2} \\
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right] \\
\mathbf{I}=\frac{b h^{3}}{12}=\frac{\left(0.5 \times(0.375)^{3}\right)}{12}=0.002197265
\end{gathered}
$$

We put the boundary conditions:-

$$
\begin{aligned}
& v_{1}=\theta_{1}=0 \\
& M_{2}=0 \\
& F_{2 Y}=-P
\end{aligned}
$$

We now deleting v_{1}, θ_{1} (rows and columns) to get this following equation :-

$$
\begin{aligned}
& \frac{E I}{L^{3}}\left[\begin{array}{rr}
12 & -6 L \\
-6 L & 4 L^{2}
\end{array}\right]\left\{\begin{array}{l}
v_{2} \\
\theta_{2}
\end{array}\right\}=\left\{\begin{array}{c}
-P \\
0
\end{array}\right\} \\
& \frac{E I}{L^{3}}\left[\begin{array}{rr}
12 & -6 L \\
-6 L & 4 L^{2}
\end{array}\right]\left\{\begin{array}{l}
v_{2} \\
\theta_{2}
\end{array}\right\}=\left\{\begin{array}{c}
-50 \\
0
\end{array}\right\}
\end{aligned}
$$

We solving this equation to get the deflection and the rotation at node 2 :-

$$
\left\{\begin{array}{l}
v_{2} \\
\theta_{2}
\end{array}\right\}=\left\{\begin{array}{l}
-0.261558 \mathrm{in} \\
-0.0392337 \mathrm{rad}
\end{array}\right\}
$$

To find the reaction forces and moment we must find it from the reactions equation :-

$$
\left\{\begin{array}{l}
F_{1 Y} \\
M_{1}
\end{array}\right\}=\frac{E I}{L^{3}}\left[\begin{array}{cc}
v_{2} & \theta_{2} \\
-12 & 6 L \\
-6 L & 2 L^{2}
\end{array}\right]\left\{\begin{array}{l}
v_{2} \\
\theta_{2}
\end{array}\right\}
$$

The reaction force and moment is :-

$$
\left\{\begin{array}{l}
F_{1 Y} \\
M_{1}
\end{array}\right\}=\left\{\begin{array}{ll}
50 & \mathrm{Ib} \\
500 & \mathrm{Ib} \cdot \mathrm{in}
\end{array}\right\}
$$

Q2. For the beam shown in Figure 2, find the following:
a) deflections and rotations at node 2 and node 3 .
b) the reactions.

Assume that:

$$
P=50 \mathrm{kN}, k=200 \mathrm{kN} / \mathrm{m}, L=3 \mathrm{~m}, E=210 \mathrm{GPa}, I=2 \times 10^{-4} \mathrm{~m}^{4} .
$$

Figure 2

The stiffness matrix for the beam element is :-

$$
\begin{aligned}
& \mathbf{k}_{1}=\frac{E I}{L^{3}}\left[\begin{array}{cccc}
v_{1} & \theta_{1} & v_{2} & \theta_{2} \\
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right] \\
& \begin{array}{llll}
v_{2} & \theta_{2} & v_{3} & \theta_{3}
\end{array} \\
& \mathbf{k}_{2}=\frac{E I}{L^{3}}\left[\begin{array}{cccc}
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right]
\end{aligned}
$$

The stiffness matrix for the spring is :-

$$
\mathbf{k}_{s}=\left[\begin{array}{cc}
v_{3} & v_{4} \\
k & -k \\
-k & k
\end{array}\right]
$$

After that we inlarge all the stiffness matrices and added together to take this global stiffness matrix :-

$$
\mathbf{k}=\frac{E I}{L^{3}}\left[\begin{array}{ccccccc}
v_{1} & \theta_{1} & v_{2} & \theta_{2} & v_{3} & \theta_{3} & v_{4} \\
{\left[\begin{array}{ccccccc}
12 & 6 L & -12 & 6 L & 0 & 0 & 0 \\
6 L & 4 L^{2} & -6 L & 2 L^{2} & 0 & 0 & 0 \\
-12 & 6 L & 24 & 0 & -12 & 6 L & 0 \\
6 L & 2 L^{2} & 0 & 8 L^{2} & -6 L & 2 L^{2} & 0 \\
0 & 0 & -12 & -6 L & 12+k^{\prime} & -6 L & -k^{\prime} \\
0 & 0 & 6 L & 2 L^{2} & -6 L & 4 L^{2} & 0 \\
0 & 0 & 0 & 0 & -k^{\prime} & 0 & k^{\prime}
\end{array}\right]}
\end{array}\right.
$$

The equation will be :-
$\begin{array}{lllllll}v_{1} & \theta_{1} & v_{2} & \theta_{2} & v_{3} & \theta_{3} & v_{4}\end{array}$
$\frac{E I}{L^{3}}\left[\begin{array}{ccccccc}12 & 6 L & -12 & 6 L & 0 & 0 & 0 \\ 6 L & 4 L^{2} & -6 L & 2 L^{2} & 0 & 0 & 0 \\ -12 & 6 L & 24 & 0 & -12 & 6 L & 0 \\ 6 L & 2 L^{2} & 0 & 8 L^{2} & -6 L & 2 L^{2} & 0 \\ 0 & 0 & -12 & -6 L & 12+k^{\prime} & -6 L & -k^{\prime} \\ 0 & 0 & 6 L & 2 L^{2} & -6 L & 4 L^{2} & 0 \\ 0 & 0 & 0 & 0 & -k^{\prime} & 0 & k^{\prime}\end{array}\right]\left\{\begin{array}{l}v_{1} \\ \theta_{1} \\ v_{2} \\ \theta_{2} \\ v_{3} \\ \theta_{3} \\ v_{4}\end{array}\right\}=\left\{\begin{array}{l}F_{1 Y} \\ M_{1} \\ F_{2 Y} \\ M_{2} \\ F_{3 Y} \\ M_{3} \\ F_{4 Y}\end{array}\right\}$
Which :-

$$
k^{\prime}=\frac{L^{3}}{E I} k
$$

We put the boundary conditions :-

$$
\begin{aligned}
& v_{1}=\theta_{1}=v_{2}=v_{4}=0 \\
& M_{2}=M_{3}=0 \\
& F_{3 Y}=-P
\end{aligned}
$$

We now deleting $v_{1}, \theta_{1}, v_{2}, v_{4}$ (rows and columns) to get this following equation :-

$$
\frac{E I}{L^{3}}\left[\begin{array}{ccc}
8 L^{2} & -6 L & 2 L^{2} \\
-6 L & 12+k^{\prime} & -6 L \\
2 L^{2} & -6 L & 4 L^{2}
\end{array}\right]\left\{\begin{array}{l}
\theta_{2} \\
v_{3} \\
\theta_{3}
\end{array}\right\}=\left\{\begin{array}{c}
0 \\
-P \\
0
\end{array}\right\}
$$

We solving this equation to get the rotation at node 2 and the deflection and the rotation at node 3 :-

$$
\left\{\begin{array}{l}
\theta_{2} \\
v_{3} \\
\theta_{3}
\end{array}\right\}=\left\{\begin{array}{c}
-0.002492 \mathrm{rad} \\
-0.01744 \mathrm{~m} \\
-0.007475 \mathrm{rad}
\end{array}\right\}
$$

To find the reaction forces and moment we must find it from the reactions equation :-

$$
\left\{\begin{array}{l}
F_{1 Y} \\
M_{1} \\
F_{2 Y} \\
F_{4 Y}
\end{array}\right\}=\frac{E I}{L^{3}}\left[\begin{array}{ccc}
\theta_{2} & v_{3} & \theta_{3} \\
{\left[\begin{array}{ccc}
6 L & 0 & 0 \\
2 L^{2} & 0 & 0 \\
0 & -12 & 6 L \\
0 & -k^{\prime} & 0
\end{array}\right]}
\end{array} \begin{array}{l}
\\
\theta_{2} \\
v_{3} \\
\theta_{3}
\end{array}\right\}
$$

The reaction forces and moment is :-

$$
\left\{\begin{array}{c}
F_{1 Y} \\
M_{1} \\
F_{2 Y} \\
F_{4 Y}
\end{array}\right\}=\left\{\begin{array}{c}
-69.78 \mathrm{kN} \\
-69.78 \mathrm{kN} \cdot \mathrm{~m} \\
116.2 \mathrm{kN} \\
3.488 \mathrm{kN}
\end{array}\right\}
$$

Q3. Using ANSYS, determine the end deflection and root bending stress of a steel cantilever beam modeled as a 2D problem. Assume the modulus of elasticity of steel is $E=29 e^{6}$ psi.

1.Enter the ANSYS program by using the launcher :ClickANSYS from the launcher menu.
Type a job name in the Initial jobname like exam1.
Specify the working directory
Pick Run to apply the information
2.Specify a title for the problem :-

ANSYS Utility Menu > File
Change Title > Enter new title [banakhar] > OK

3.Preferences

structural >ok
4. Define the element type (Triangle 6 node 2) structural solid, plate thickness, and material properties.
ANSYS Main Menu
Preprocessor > Element Type > Add/Edit/Delete..Add... > Structural Solid
$>$ [Triangle 6 node 2] > OK
Options... > PLANE2 element type options > k3 [Plane strs w/thk] > OK > Close
Preprocessor > real Constants...> Add/Edit/Delete>Add...> OK
>RealConstant for PLANE2>THK [0.5] > OK > Close
Preprocessor > Material Props > Costant - Isotropic >EX [29e6] > OK ANSYS Toolbar > SAVE_DB
5.Preprocessing

1. Begin the solid model by dimensions.

ANSYS Main Menu
Preprocessor > -Modeling-Create-Areas-Rectangle > By dimensions
기 [$\mathrm{X} 1, \mathrm{X} 2=(0,10)]$
기 $\mathrm{Y} 1, \mathrm{Y} 2=(0,0.375)]$
$>\mathrm{OK}$
6. Specify an element size and mesh the solid model.

ANSYS Main Menu
Preprocessor >- Meshing-Size Control-Manual Size >-Global- Size ...> SIZE [0.5]
Preprocessor > - Meshing-Mesh - Areas - Free > Pick All

Solution

1. Apply displacement constraints at the left side

ANSYS Main Menu
Solution >-Loads- Apply-Structural-Displacements > On nodes
][The three nodes on the left vertical side.]
Apply U, ROT, on KPs > Lab2 [All DOF] > KEXPND > Yes > OK
Solution >-Loads- Apply-Structural-Force/Moment >-On nodes
[The upper right cornor] > OK > [FY] [-50] > OK
Solution>-Solve - Current LS > OK > Close
Postprocessing
Review the results using the general postprocessor (POST1).
We will view a deformed shape and the stress distribution.
ANSYS main Menu
General Postproc > Plot Results > Deformed Shape > KUND > Def + Undeformed > OK
General Postproc > Plot Results > -Contour Plot- Nodal Solu...
$>$ Contour Nodal Solution Data > [Stress] > [X-direction SX] > OK
General Postproc > Plot Results >-Contour Plot- Nodal Solu...
$>$ Contour Nodal Solution Data > [Stress] > [Y-direction SY] > OK
General Postproc > Plot Results > -Contour Plot- Nodal Solu...
$>$ Contour Nodal Solution Data > [Stress] > [XY-shear SXY] > OK
General Postproc > Plot Results >-Contour Plot- Nodal Solu...
$>$ Contour Nodal Solution Data > [Stress] $>$ [Von mises SEQV] $>$ OK
General Postproc >List Results > Element solu... > stress > Components S
General Postproc >List Results > Nodal solu... > DOF solution > All DOFs DOF
General Postproc >List Results > Reaction solu... > All Items

Q4. A three-dimensional approximation of a bridge frame is shown in Figure 3.

A three-dimensional approximation of a bridge frame is shown in the figure.

All dimensions in the figure are given in feet. The members of this structure are wood:

Modulus	Poisson's Ratio	Density
$1.4 \times 10^{6} \mathrm{psi}$	0.21	$0.0266 \mathrm{lb}_{\mathrm{m}} / \mathrm{in}^{3}$

Three different sizes of construction timber are used in this frame. Each cross-sectional area is:

Strongest Section $(4 \mathrm{x} 4)$	Medium Section (2×4)	Lightest Section (2×2)
$12.25 \mathrm{in}^{2}$	$5.25 \mathrm{in}^{2}$	$2.25 \mathrm{in}^{2}$

Solution

Analyze this structure for a static loading condition:
Pin Constraints in all DOF (UX, UY, UZ) at the four base corners (A, B, C, D in the figure)

One lateral (or transverse) constraint along the top (at point E in the figure) which gives support to the frame in the side-to-side direction.

To simulate the wood decking load on the base, apply a 200 lbf downward load on each of the four unconstrained pins of the base.

Then, to account for a heavy load crossing the bridge, add 1000 lbfto each of the two unconstrained pins nearest B and C on the figure (making the total load 1200 lbf downward on each of those two pins).

Also, include the weight of the frame structure (by using a vertical gravity loading)

Enter the ANSYS program by using the launcher
Enter a job name, say banakhar > Run
File > Change Title > [3-D Beam]

Preferences

structural > OK

Preprocessing

1. Define the element type, element real constants, and material properties.

3D elastic beam is the appropriate element for analyzing plane frames.
Preprocessor > Element Type > Add/Edit/Delete... > Add... >
Structural Beam [3D spar 8] > OK $>$ Close
Preprocessor > Real Constants >Add/Edit/Delete... > Add... > OK
Real Constant Set No. [1]: AREA [12.25] > OK
Real Constant Set No. [2]: AREA [5.25] > OK
Real Constant Set No. [3]: AREA [2.25] > OK > Close
Preprocessor $>$ Material Props $>$ - constant - Isotropic
$>$ EX [1.4e6] >DENS [0.0266] >PRXY [0.21] > OK
ANSYS Toolbar > SAVE_DB
Preprocessor > -Modeling-Create Nodes > In active CS

$$
\begin{aligned}
& {[\mathrm{WP}=(0,0,0)] \text { node } 1} \\
& {[\mathrm{WP}=(8,0,0)] \text { node } 2} \\
& {[\mathrm{WP}=(16,0,0)] \text { node } 3} \\
& {[\mathrm{WP}=(24,0,0)] \text { node } 4} \\
& {[\mathrm{WP}=(24,0,-6)] \text { node } 5} \\
& {[\mathrm{WP}=(16,0,-6)] \text { node } 6} \\
& {[\mathrm{WP}=(8,0,-6)] \text { node } 7} \\
& {[\mathrm{WP}=(0,0,-6)] \text { node } 8} \\
& {[\mathrm{WP}=(4,8,0)] \text { node } 9} \\
& {[\mathrm{WP}=(12,8,0)] \text { node } 10} \\
& {[\mathrm{WP}=(20,8,0)] \text { node } 11} \\
& {[\mathrm{WP}=(20,8,-6)] \text { node } 12} \\
& {[\mathrm{WP}=(12,8,-6)] \text { node } 13} \\
& {[\mathrm{WP}=(4,8,-6)] \text { node } 14}
\end{aligned}
$$

 PlotCtrls \(>\) Numbering \(>\) Plot Numbering Controls \(>\) NODE \(>\) On \(>\) OK
 PlotCtrls > Pan-Zoom-Rotate > Iso > Close
 Utility menu > list > nodes ...
 ANSYS Toolbar > SAVE_DB
Preprocessor > -Modeling-Create > Elements
> Element Attributes > [REAL] [1] >OK
Preprocessor >-Modeling-Create > Elements >-Auto Numbered-Thru Nodes
[Node 1 and 2] > OK
[Node 2 and 3] > OK
[Node 3 and 4] > OK
[Node 4 and 5] > OK
[Node 5 and 6] > OK
[Node 6 and 7] > OK
[Node 7 and 8] > OK
[Node 8 and 1] > OK
[Node 2 and 8] > OK
[Node 2 and 7] > OK
[Node 2 and 6] > OK
[Node 3 and 6] > OK
[Node 4 and 6] > OK
Preprocessor $>-$ Modeling-Create $>$ Elements
> Element Attributes > [REAL] [2] > OK
Preprocessor >-Modeling-Create >Elements $>$-Auto Numbered-Thru Nodes
[Node 1 and 9] > OK
[Node 9 and 2] > OK
[Node 2 and 10] > OK
[Node 10 and 3] > OK
[Node 3 and 11] > OK
[Node 11 and 4] > OK
[Node 8 and 14] > OK
[Node 14 and 7] > OK
[Node 7 and 13] > OK
[Node 13 and 6] > OK
[Node 6 and 12] > OK
[Node 12 and 5] > OK

Preprocessor >-Modeling-Create >Elements
> Element Attributes > [REAL] [3] > OK
Preprocessor >-Modeling-Create >Elements >-Auto Numbered-Thru Nodes
[Node 9 and 10] > OK
[Node 10 and 11] > OK
[Node 11 and 12] > OK
[Node 12 and 13] > OK
[Node 13 and 14] > OK
[Node 14 and 9] > OK
[Node 9 and 13] > OK
[Node 10 and 13] > OK
[Node 11 and 13] > OK

Solution

Solution > -Loads > Apply >-Structural-Displacement $>$ On Nodes Pick [Node 1] > OK > Apply U.ROT on Nodes > [ALL DOF] > OK Pick [Node 4] > OK > Apply U.ROT on Nodes > [ALL DOF] > OK Pick [Node 5] > OK > Apply U.ROT on Nodes > [ALL DOF] > OK Pick [Node 8] > OK $>$ Apply U.ROT on Nodes $>$ [ALL DOF] $>$ OK Pick [Node 13] > OK > Apply U.ROT on Nodes > [UZ] > OK Apply >-Structural- Force / Moment >
On Nodes > [Node 1] [Node 8] > OK > Direction of force/mom [FY] > Value [-200] > OK On Nodes > [Node 4] [Node 5] > OK > Direction of force/mom [FY] > Value [-1200] > OK
Solution > -Loads > Apply > -Structural- Gravity ...
ACELX [0]
ACELY [-8]
ACELZ [0]
ANSYS Toolbar > SAVE_DB
Initiate the solution
Solution > -Solve- Current LS
Postprocessing
Plot deformed mesh and bending momentANSYS main Menu >General Postproc > Plot Results > Deformed Shape >
KND > Def + Undeformed
ANSYS main Menu > General Postproc > Plot Results >
Element solu ... > stress $>$ x-direction SX
Element solu ... $>$ stress $>y$ - direction SY
Element solu ... $>$ stress $>\mathrm{z}$ - direction SZ
Element solu $>$ stress $>$ xy - shear $S X$
Element solu ... $>$ stress $>$ yz- shear SYZ SYZ
Element solu ... > stress $>$ xz- shear SXZ $>\mathrm{OK}$
ANSYS main Menu >General Postproc > list Results >
Element solu ... > stress > components $\mathrm{S}>\mathrm{OK}$
ANSYS main Menu >General Postproc > list Results >
Nodal solu ... > DOF Solution > All DOFs DOF > OK
ANSYS main Menu >General Postproc > Reaction solu ... > All items > OK

