Prescribed Nonzero Displacements in Example Truss

Prescribed Nonzero Displacements

Recall the master stiffness equations

$$
\left[\begin{array}{cccccc}
20 & 10 & -10 & 0 & -10 & -10 \\
10 & 10 & 0 & 0 & -10 & -10 \\
-10 & 0 & 10 & 0 & 0 & 0 \\
0 & 0 & 0 & 5 & 0 & -5 \\
-10 & -10 & 0 & 0 & 10 & 10 \\
-10 & -10 & 0 & -5 & 10 & 15
\end{array}\right]\left[\begin{array}{l}
u_{x 1} \\
u_{y 1} \\
u_{x 2} \\
u_{y 2} \\
u_{x 3} \\
u_{y 3}
\end{array}\right]=\left[\begin{array}{c}
f_{x 1} \\
f_{y 1} \\
f_{x 2} \\
f_{y 2} \\
f_{x 3} \\
f_{y 3}
\end{array}\right]
$$

The displacement B.Cs are now

$$
u_{x 1}=0, \quad u_{y 1}=-0.5, \quad u_{y 2}=0.4
$$

Prescribed NZ Displacements (cont'd)

$$
\left[\begin{array}{cccccc}
20 & 10 & -10 & 0 & -10 & -10 \\
10 & 10 & 0 & 0 & -10 & -10 \\
-10 & 0 & 10 & 0 & 0 & 0 \\
0 & 0 & 0 & 5 & 0 & -5 \\
-10 & -10 & 0 & 0 & 10 & 10 \\
-10 & -10 & 0 & -5 & 10 & 15
\end{array}\right]\left[\begin{array}{c}
0 \\
-0.5 \\
u_{x 2} \\
0.4 \\
u_{x 3} \\
u_{y 3}
\end{array}\right]=\left[\begin{array}{c}
f_{x 1} \\
f_{y 1} \\
0 \\
f_{y 2} \\
2 \\
1
\end{array}\right]
$$

Remove rows $1,2,4$ but (for now) keep columns

$$
\left[\begin{array}{cccccc}
-10 & 0 & 10 & 0 & 0 & 0 \\
-10 & -10 & 0 & 0 & 10 & 10 \\
-10 & -10 & 0 & -5 & 10 & 15
\end{array}\right]\left[\begin{array}{c}
-0.5 \\
u_{x 2} \\
0.4 \\
u_{x 3} \\
u_{y 3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right]
$$

Prescribed NZ Displacements (cont'd)

Pass the effect of known displacements to RHS, and delete columns
$\left[\begin{array}{ccc}10 & 0 & 0 \\ 0 & 10 & 10 \\ 0 & 10 & 15\end{array}\right]\left[\begin{array}{l}u_{x 2} \\ u_{x 3} \\ u_{y 3}\end{array}\right]=\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]-$

$$
\left[\begin{array}{c}
(-10) \times 0+0 \times(-0.5)+0 \times 0.4 \\
(-10) \times 0+(-10) \times(-0.5)+0 \times 0.4 \\
(-10) \times 0+(-10) \times(-0.5)+(-5) \times 0.4
\end{array}\right]=\left[\begin{array}{c}
0 \\
-3 \\
-2
\end{array}\right]
$$

Solving gives

$$
\left[\begin{array}{l}
u_{x 2} \\
u_{x 3} \\
u_{y 3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-0.5 \\
0.2
\end{array}\right]
$$

Prescribed NZ Displacements (cont'd)

$$
\left[\begin{array}{l}
u_{x 2} \\
u_{x 3} \\
u_{y 3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-0.5 \\
0.2
\end{array}\right]
$$

Complete the displacement vector with known values

$$
\mathbf{u}=\left[\begin{array}{c}
0 \\
-0.5 \\
0 \\
0.4 \\
-0.5 \\
0.2
\end{array}\right]
$$

Prescribed NZ Displacements (cont'd)

Recovery of reaction forces and internal member forces proceeds as before

In summary, the only changes to the DSM is in the application of displacement boundary conditions

