بسـم الله الرحمن الرحيم

King Abdulaziz University
Engineering College
Department of Production and Mechanical System Design

MENG 470 Mechanical Vibrations

First Exam

Closed-book Exam
Monday: 8/2/1425 H
Time Allowed: 60 mins

Name:	Sec. No.:	ID No.:

Question 1		10
Question 2		10
Question 3		10
Question 4		10
TOTAL		40

1. There are totally 4 problems in this exam.
2. This is a closed book and closed notes Opportunity to Shine
3. Show all work for partial credit.
4. Assemble your work for each problem in logical order.
5. Justify your conclusion. I cannot read minds.

Q1. Figure. 1 shows the free response of a vibration system to an initial displacement. If the mass is 5 kg , determine all possible characteristics which describe the vibration of the system as following:
a) Initial conditions
b) Damping ratio
c) Damping period
d) Undamped and damped natural frequencies
e) Spring constant
f) Damping constant

Figure. 1

Q2. The system shown in Figure. 2 has a natural frequency of 5 hz for the following data:
$m=10 \mathrm{~kg}, J_{0}=5 \mathrm{~kg}-\mathrm{m}^{2}, r_{1}=10 \mathrm{~cm}, r_{2}=25 \mathrm{~cm}$. When the system is disturbed by giving it an initial displacement, the amplitude of free vibration is reduced by 80 percent in 10 cycles.
Determine the values of k and c.

Figure. 2

Q3. An unknown mass, m, attached at the end of an unknown spring, k, has a natural frequency of 95 Hz . When a 0.5 kg mass is added to m, the natural frequency is lowered to 75 Hz . Determine the mass, $m(\mathrm{~kg})$, and the spring constant, $k(\mathrm{~N} / \mathrm{m})$.

Q4. Figure. 3 represents a simplified arrangement for a spring-supported vehicle traveling over a rough road. Determine an equation for the amplitude of motion for m as a function of road speed. What is the worst road speed?

Figure. 3

