King Abdulaziz University Engineering College Department of Production and Mechanical System Design



## MENG 470 Mechanical Vibrations

Final Exam Closed-book Exam Wednesday: 24/11/1425 H Time Allowed: 120 mins

Name:

ID No.:

| Question 1 | 25  |
|------------|-----|
| Question 2 | 25  |
| Question 3 | 25  |
| Question 4 | 25  |
| TOTAL      | 100 |

قال الله تعالى : (تلك الدار الآخرة نجعلها للذين لا يريدون علوا في الأرض ولا فسادا والعاقبة للمتقين)

## Instructions

- 1. This is a closed book and closed notes Opportunity to Shine
- 2. There are five questions in this exam. Answer ONLY four of them.
- 3. Show all work for partial credit.
- 4. Assemble your work for each problem in logical order.
- 5. Justify your conclusion. I cannot read minds.

- Q1. Indicate whether each of the following statements is true or false:
  - 1. The amplitude of an undamped system will not change with time.
  - 2. A system vibrating in air can be considered a damped system.
  - 3. The equation of motion of a single degree of freedom system will be the same whether the mass moves in a horizontal plane or an inclined plane.
  - 4. When a mass vibrates in a vertical direction, its weight can always be ignored in deriving the equation of motion.
  - 5. The principle of conservation of energy can be used to derive the equation of motion of both damped and undamped systems.
  - 6. The damped frequency can in some cases be larger than the undamped natural frequency of the system.
  - 7. The damped frequency can be zero in some cases.
  - 8. The natural frequency of vibration of a torsional system is given by  $\sqrt{k_T/J}$ , where  $k_T$  and J denote the torsional spring constant and the polar mass moment of inertia, respectively.
  - 9. The undamped natural frequency of a system is given by  $\sqrt{g/\delta_{st}}$  where  $\delta_{st}$  is the static deflection of the mass.
  - 10. For an undamped system, the velocity leads the displacement by  $\pi/2$ .
  - 11. The motion diminishes to zero in both underdamped and overdamped cases.
  - 12. The logarithmic decrement can be used to find the damping ratio.
  - 13. In torsional vibration, the displacement is measured in terms of linear coordinate
  - 14. The phase angle of the response depends on the system parameter m, c, k, and  $\omega$ .
  - 15. During beating, the amplitude of the response builds up and then diminishes in a regular pattern.
  - 16. The *Q*-factor can be used to estimate the damping in a system.
  - 17. The amplitude ratio attains its maximum value at resonance in the case of viscous damping.
  - 18. Damping reduces the amplitude ratio for all values of the forcing frequency.
  - 19. The unbalance in a rotating machine causes vibration.
  - 20. The normal modes can also be called principal modes.
  - 21. The generalized coordinates are linearly dependent.
  - 22. Principal coordinates can be considered as generalized coordinates.
  - 23. The vibration of a system depends on the coordinate system.
  - 24. The nature of coupling depends in the coordinate system.
  - 25. The magnification factor is the ratio of maximum amplitude and static deflection.
  - 26. The response will be harmonic if excitation is harmonic.

- 27. The principal (or modal) coordinates avoid both static and dynamic coupling.
- 28. The use of principal (or modal) coordinates can NOT be used to find the response of the system.
- 29. The mass, stiffness, and damping matrices of a two degree of freedom system are always NOT symmetric.
- 30. The characteristics of a two degree of freedom system are used in the design of dynamic vibration absorber.
- 31. A semidefmite system can NOT have nonzero natural frequencies.
- 32. During free vibration, different degrees of freedom oscillate with different amplitudes.
- 33. The modal eigenvectors of a system are the physical not-normalized modes of vibration.
- 34. The vibration of a system under external forces is called damped vibration.
- 35. When a two degree of freedom system is subjected to a harmonic force, the system vibrates at the frequency of applied force.
- 36. When the forcing frequency is equal to one of the natural frequencies of the system, a phenomenon known as *beating* occurs.
- 37. For an underdamped multidegree of freedom system, all the eigenvalues can be complex.
- 38. The amplitudes and phase angles are determined from the boundary conditions of the system.
- 39. A definite system has at least one rigid body motion.
- 40. The elastic coupling is also known as dynamic coupling while the inertia coupling is also known as static coupling.
- 41. The equations of motion of a system will be coupled when principal (or principle) coordinates are used.
- 42. The vibration of a system under initial conditions only is called forced vibration.
- 43. The number of degrees of freedom of a vibrating system depends only on number of masses.
- 44. The equations of motion of a two degree of freedom system are in general coupled.
- 45. The stiffness matrix of a system is always symmetric and positive definite.
- 46. For a multidegree of freedom system, one equation of motion can be written for each degree of freedom.
- 47. Lagrange's equation cannot be used to derive the equations of motion of a multidegree of freedom system.
- 48. The mass, stiffness, and damping matrices of a multidegree of freedom are always symmetric.
- 49. A multidegree of freedom system can have six of the natural frequencies equal to zero
- 50. The mass matrix of a system is always symmetric and positive definite.

|     | True | False |
|-----|------|-------|
| 1.  |      |       |
| 2.  |      |       |
| 3.  |      |       |
| 4.  |      |       |
| 5.  |      |       |
| 6.  |      |       |
| 7.  |      |       |
| 8.  |      |       |
| 9.  |      |       |
| 10. |      |       |
| 11. |      |       |
| 12. |      |       |
| 13. |      |       |
| 14. |      |       |
| 15. |      |       |
| 16. |      |       |
| 17. |      |       |
| 18. |      |       |
| 19. |      |       |
| 20. |      |       |
| 21. |      |       |
| 22. |      |       |
| 23. |      |       |
| 24. |      |       |
| 25. |      |       |
| 26. |      |       |
| 27. |      |       |
| 28. |      |       |
| 29. |      |       |
| 30. |      |       |
| 31. |      |       |
| 32. |      |       |
| 33. |      |       |
| 34. |      |       |
| 35. |      |       |
| 36. |      |       |
| 37. |      |       |
| 38. |      |       |
| 39. |      |       |
| 40. |      |       |
| 41. |      |       |
| 42. |      |       |
| 43. |      |       |
| 44. |      |       |
| 45. |      |       |
| 46. |      |       |
| 47. |      |       |
| 48. |      |       |
| 49. |      |       |
| 50. |      |       |

- Q2. Consider the system shown in Figure 1 where  $m_1 = 30$  kg,  $m_2 = 2$  kg, k = 15 N/m,  $l=2m, f(t) = 10 \sin(5t)$  N.
  - (a) What's the degree of the system?
  - (b) Write the equation of motion of the system in matrix form.
  - (c) Is the system statically or dynamically coupled or both.
  - (d) Find the natural frequencies and corresponding mode shapes.
  - (e) Calculate the normalized eigenvectors of the system.
  - (f) Write down the equation of motion in matrix form.
  - (g) Decouple the coupled equations using modal transformation.
  - (h) Recover the physical degrees of freedom from the modal degree of freedom.



Figure 1

Q3. Consider a cable shown in Figure 2 that has one end fixed and the other end free to slide along a smooth vertical guide. The free end cannot support a transverse force so that we have:

$$\frac{\partial \omega(L,t)}{\partial x} = 0$$

The cable length L=100m is made out of steel with a uniform density  $\rho=7.8 \times 10^{3}$  kg/m<sup>3</sup>, and constant cross sectional area A=7.854X10<sup>-5</sup> m<sup>2</sup>; and it is under tension of T=10,000 N.

Calculate the natural frequencies and mode shape of the cable. Plot the first four made shapes (Normalized the mode shapes so that its maximum amplitude is one).



Figure 2

- Q.4 Consider the system shown in Figure 3 and determine the following:
- a) The degree of freedom.
- b) The kinetic energy of the system in terms of  $\vec{x}$ .
- c) The potential energy of the system in terms of x.
- d) The equation (or equations) of motion.
- e) The natural frequency (or frequencies).



Figure 3

## Q5. The system shown in Figure 4 has the following parameters:

 $m = 1 \text{ kg}, I_G = 2 \text{ kg.m}^2, k_1 = k_2 = 100 \text{ N/m}, r = 2 \text{ m}, M_2(t) = 100 \cos \omega t$ 



Figure 3

Figure1: A two degree of freedom system with translation and rotation.

- a) Derive the equations of motion.
- b) Find the natural frequencies for the system  $\omega_1$  and  $\omega_2$ .
- c) Find the "mass normalized" eigenvectors (U).
- d) Find  $U^{T}MU$  and  $U^{T}KU$ .
- e) Decouple the equations of motion into modal coordinates and find the transient and steady state solution, or modal displacements, for each modal coordinate ( $\eta_1$ and  $\eta_2$ ).

Use the following initial conditions: x(0) = 0,  $\dot{x}(0) = 4$ ,  $\theta(0) = 0$ ,  $\dot{\theta}(0) = 0$ ...

f) Use the solution in modal coordinates to write the physical displacement of *m* and physical rotation of *IG*, or the position vector.  $X = [x \ \theta]^T$ .