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Instructions

This is a closed book and closed notes Opportunity to Shine
Show all work for partial credit.

Assemble your work for each problem in logical order.
Justify your conclusion. I cannot read minds.



Q1. Indicate whether each of the following statements is true or false:

1.
2.
3.

10.
11.
12.
13.
14.
15.

16.
17.

18.
19.
20.
21.
22,
23.
24,
25.
26.

The amplitude of an undamped system will not change with time.

A system vibrating in air can be considered a damped system.

The equation of motion of a single degree of freedom system will be the same whether
the mass moves in a horizontal plane or an inclined plane.

When a mass vibrates in a vertical direction, its weight can always be ignored in deriv-
ing the equation of motion.

The principle of conservation of energy can be used to derive the equation of motion of
both damped and undamped systems.

The damped frequency can in some cases be larger than the undamped natural
frequency of the system.

The damped frequency can be zero in some cases.
The natural frequency of vibration of a torsional system is given by \/k, /J , where kr

and J denote the torsional spring constant and the polar mass moment of inertia,

respectively.

0,

The undamped natural frequency of a system is given by V 9/0, where “st is the static

deflection of the mass.

For an undamped system, the velocity leads the displacement by”/ 2,

The motion diminishes to zero in both underdamped and overdamped cases.

The logarithmic decrement can be used to find the damping ratio.

In torsional vibration, the displacement is measured in terms of linear coordinate
The phase angle of the response depends on the system parameter m, ¢, k, and @ .
During beating, the amplitude of the response builds up and then diminishes in a regular
pattern.

The Q-factor can be used to estimate the damping in a system.

The amplitude ratio attains its maximum value at resonance in the case of viscous
damping.

Damping reduces the amplitude ratio for all values of the forcing frequency.

The unbalance in a rotating machine causes vibration.

The normal modes can also be called principal modes.

The generalized coordinates are linearly dependent.

Principal coordinates can be considered as generalized coordinates.

The vibration of a system depends on the coordinate system.

The nature of coupling depends in the coordinate system.

The magnification factor is the ratio of maximum amplitude and static deflection.

The response will be harmonic if excitation is harmonic.



27.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.
40.

41.

42.
43.

44,

45.

46.

47.

48.

49.
50.

The principal (or modal) coordinates avoid both static and dynamic coupling.

The use of principal (or modal) coordinates can NOT be used to find the response of the
system.

The mass, stiffness, and damping matrices of a two degree of freedom system are
always NOT symmetric.

The characteristics of a two degree of freedom system are used in the design of dynamic
vibration absorber.

A semidefmite system can NOT have nonzero natural frequencies.

During free vibration, different degrees of freedom oscillate with different amplitudes.
The modal eigenvectors of a system are the physical not-normalized modes of vibration.
The vibration of a system under external forces is called damped vibration.

When a two degree of freedom system is subjected to a harmonic force, the system
vibrates at the frequency of applied force.

When the forcing frequency is equal to one of the natural frequencies of the system, a
phenomenon known as beating occurs.

For a underdamped multidegree of freedom system, all the eigenvalues can be complex.
The amplitudes and phase angles are determined from the boundary conditions of the
system.

A definite system has at least one rigid body motion.

The elastic coupling is also known as dynamic coupling while the inertia coupling is
also known as static coupling.

The equations of motion of a system will be coupled when principal (or principle)
coordinates are used.

The vibration of a system under initial conditions only is called forced vibration.

The number of degrees of freedom of a vibrating system depends only on number of
masses.

The equations of motion of a two degree of freedom system are in general coupled.

The stiffness matrix of a system is always symmetric and positive definite.

For a multidegree of freedom system, one equation of motion can be written for each
degree of freedom.

Lagrange's equation cannot be used to derive the equations of motion of a
multidegree of freedom system.

The mass, stiffness, and damping matrices of a multidegree of freedom are always sym-
metric.

A multidegree of freedom system can have six of the natural frequencies equal to zero

The mass matrix of a system is always symmetric and positive definite.
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Q2.

Consider the system shown in Figure 1 where m; = 30 kg, m; = 2 kg, k = 15 N/m,
I=2m, f(t) = 10 sin(5t) N.

(a) What's the degree of the system?

(b) Write the equation of motion of the system in matrix form.

(c) Is the system statically or dynamically coupled or both.

(d) Find the natural frequencies and corresponding mode shapes.

(e) Calculate the normalized eigenvectors of the system.

(F) Write down the matrix form.

(g) Decouple the coupled equations using modal transformation.

(h) Recover the physical degrees of freedom from the modal degree of freedom.

Figure 1



Answer:
1 .2 1 . N2
T :Emly +Em2(y +106)

2

U = ky? +m g /(1-cos0) = ky +m,g s

%: m,y +m,y +m,/0

a—_m L0y +m 0?0

00

d|oT " " o
d—{a}—mly +m,y +m,/0
d—[al} m, ¢y +m,¢? 0

dt | 06
ou
—=kyy

oU
20 29

(mq 4+ mg) maf y i By 0 y | | f(t)
mal trgf? f 0 maggl g | 0

Substituting numbers (my = 30 kg, m2 = 2 kg, k1 = 15 N/m, ¢ = 2m, and g = 9.81m/s% a
f(t) = 10sin(5¢)N) gives:

2 41[a) [15 o0 y | [ 10sin(5¢)
4 8|4 0 3924 |16 ("~ 0

where the inertia coupling is clear. The goal is to find the solution to this coupled set of
differential equations.

Solving the eigenvalue problem gives (this was done on the last assignment):

first mode: w? = 4657 (rad/s)? { XHh = { } :{ 119;[?0%5 }
. .

second mode: w2 = 5.266 (rad/s)® { X}, = { 1:5) } :{ —lﬂﬂgzu }
i :

The first mode shape is normalized as follows:

a. Caleulate

{X}] [M]{x}, = { 19.065 1.000 } [ 32 4] { 19.065

0o 1 000 }: 1.179 % 104



b. Secale the eigenvector by dividing each element by the square root of the number in parti

oy =V 19.065/4/T.179 x 107 | _ [ 0.17557
ShT e ;T 1.000/yTITOx 107 [ T | 0.00921

c. Now,

T M : 32 4] 0.17557
{X}] [M]{xX}, = { 0.17557 0.00921 } l T 1 { 000091 }: 1.00

The second mode shape yields:

[X) [M]{X}, = { 0137 1000 } [ " j] { B } _ 75048

and the scaled mode is:
(X}, = Y . —0.137/4/7.5048 _ ] —0.0501
Sz e 5 N 1.000/+/7.5048 N 0.3650

The modal matrix is then:

e v | 017557 —0.0501
U= 1A} X D] = {0.00921 0.3650 ]

The vector of degrees-of-freedom can be expanded in terms of the eigenvectors as:

y(t) | Y Y
where the ¢;(t) variables represent the fraction of each mode contributing to the values of the
degrees-of-freedom, y(t) and #(t), at any time £.

i} )

Substituting this into the equations-of-motion yields:

This can also be expressed as:

(M][U]{e} + [K] [U] {e} = {/}



Premultiply this by the transpose of the modal matrix to give:

1" M) U] {é} + (U] (K] U] {e} = [UT" {f}
where the normalization of the eigenvectors causes:
1" (M [U] = [1]
where [I] is the identity matrix and:
U] K [U] = [ding(w?)]

where [diag(w?)] is a diagonal matrix with the squared natural frequencies as elements.
For the particular example here:
1T 0] — 0.17557 0.00921 32 4 0.17557 —0.0501 | | 1.00 0.00
R —0.0501 0.3650 4 8 0.00921 0.3650 |~ | 0.00 1.00
T T = 0.17557 0.00921 15 0 0.17557 —0.0501 | | .4657 0.00
T K]0 = —0.0501  0.3650 0 39.24 0.00921  0.3650 | — | 0.00 5.266

and:

[E-"]T (f} = 0.17557 0.00921 10 sin(5¢) _ 1.7557 sin(5¢)
—0.0501 0.3650 0 —0.501 sin(5¢)

The equations-of-motion then become:
1.00 0.00 ‘1 I 4657 0.00 ey | ) 1.7557sin(5¢)
0.00 1.00 o 0.00 5.266 co [ | —=0.501sin(5¢)
The system of equations has now been decoupled and can be written as two, independent
equations that can be solved using the methods applied to single degree-of-freedom systems. That
is:
¢y + 4657 ¢; = 1.7557 sin(5t)
and
¢ + 5.266 cp = —0.501 sin(5¢)

The physical degrees-of-freedom can be recovered at any time from:

y(t) _ 0] er(t) | [ 017557 —0.0501 ] [ ey(t)
a(t) [~ Y ex(t) [T | 0.00921  0.3650 eo(t)



Q3.  Consider a cable shown in Figure 2 that has one end fixed and the other end free to
slide along a smooth vertical guide. The free end cannot support a transverse force so that we
have:

oo(L,t)
OX

0

3 3
The cable length L=100m is made out of steel with a uniform density p=7.8X10 kg/m , and
constant cross sectional area A=7.854X10° m?; and it is under tension of T=10,000 N.

Calculate the natural frequencies and mode shape of the cable. Plot the first four made shapes
(Normalized the mode shapes so that its maximum amplitude is one).

Smooth
vertical guide

B & Slopeis always zero

Elastic cable _—4x since there is no transverse force
— wi(xt)
. e
Fixed o »
< > X
L

Figure 2



Answer:

Calculate the natural frequencies and mode shapes of the cable. Plot the first four mode
shapes (Normalize the mode shape so that its maximum amplitude is one).

The equation of motion for the cable is
Pw(w,t)  ,0%w(x,t)
a2t 92

where

2= — 1632354 x 104
pPA

The wave speed is ¢ = 127.76 m /sec.

Using the method of separation of variables, we have

T(t) + 2T (1) =0 (1)
and
w2
X"(2) + =X (x) = 0 (2)
[

with boundary conditions X (0) = 0 and X'(L) = 0.
The mode shape function X () is a solution of equation 2 given by

[

X(z)=A cc-s(%a:) + B sin( ; x)

, w o w w w
X'(z) = —A—sin(—x) + B—cos(—x)

c c c c
Applying the two boundary conditions, we have

X(0)=1440B=0 , —Zsin(ZL)A+ Zcos(ZL)B=0
C

L [ [

Or re-writing them in a matrix equation, we have

1 0 Al To
[—%sin{%L} %ms{%f;}} lB] = M 3)

1
—=sin(2L) *cos(ZL)

GULAR; thus we obtain the characteristic equation of the cable system as

1 must be SIN-

For nontrivial solutions in A and B, the matrix

1 0 | w w
= 0= Zcos(=L) =0
~£5in(2L) “cos(£L) ;cos(Gh)

det l



The natural frequencies are given by
w w
—=0 , cos(—L)=0
c c

Note that the natural frequency w = 0 leads to a trivial solution of X () = 0.

' 2k +1
CDS{EL}:DZTriL: i T
c c 2
or 2k +1
W = %% rad/sec (k=0,1,2,3,--+)

Solving for the mode shape from equation (3), we have
A = D P B —

Thus, the kt" mode shape is given by

The first four mode shapes and natural frequencies are

(a) For k=10
™ 127.76
w = — = 2.0069 rad/sec
2 100
T @
Xy(x) = sin(——
(@) = sin(C2)
(b) For k =
37 127.76
Wwae = = 6.0207 rad/sec
2 100

3T x

Xo(x) = sin( > L)




Q.4 Consider the system shown in Figure 3 and determine the following:
a) The degree of freedom.
b) The kinetic energy of the system in terms of X .
c) The potential energy of the system in terms of x.
d) The equation (or equations) of motion.
e) The natural frequency (or frequencies).

G-

Figure 3

Answer:
The system is a 1-DOF system.

1., 1 L, 1.
T :EJ1¢912+E(m0+m2)X2+§J2022

X X
=— and 6,=—
1 rl 2 r2
T _1 J—§+(m0+m2)+‘]—§ X2==m,X*

2 1 r‘2

2

The equation of motion can now be written as:
My X +K X =0

2
[J—;Hmo +m2)+‘]—§}'<'+[k1(5j +k2]x =0
rl r-2 r1

The natural frequency is:

2
|:J—;+(m0 +m2)+J—§}(+[kl(5) +k2]x =0
rl I’2 I’-1

2
U :§k1<Rel>2+§kz<rzez)z=1M5J +k2]x2=§keﬁx2




Q5.

The system shown in Figure 4 has the following parameters:

m =1kg, I, =2 kg.m?, k, =k, =100 N/m, r =2 m, M, (t) =100cos et

] x(t)

NONONON N NN

f)

Figure 3

Figurel: A two degree of freedom system with translation and rotation.

Derive the equations of motion.
Find the natural frequencies for the system w; and w,.

Find the “mass normalized” eigenvectors (U).

Find U'MU and U KU.

Decouple the equations of motion into modal coordinates and find the transient
and steady state solution, or modal displacements, for each modal coordinate (71
and 7).

Use the following initial conditions: x(0) = 0, X (0) =4, 6(0) = 0, #(0) =0.

Use the solution in modal coordinates to write the physical displacement of m and

T
physical rotation of I1G, or the position vector. X=[x 4] .

M:(t)
























