بسـم الله الرحمن الرحيم

King Abdulaziz University
Engineering College
Department of MENG
$3^{\text {rd }}$ Homework Assignment

Mechanical Vibrations
MENG 470
Spring 1425 H
Due Wed.: 19/1/1425 H

1) Give the amplitude, frequency, and period of oscillation for the signal illustrated in Figure P1.1.

Figure 1
Sol.:

Amplitude $=4$
Period $=\tau_{n}=\frac{1}{f_{n}}=4 \mathrm{sec}$
Frequency $=f_{n}=\frac{1}{\tau_{n}}=0.25 \mathrm{~Hz}$
2) What is the natural frequency for the system illustrated in Figure 2 in terms of m, k_{1}, k_{2}, k_{3} and k_{4} ?

Figure 2
Sol.:
$\frac{1}{k_{12}}=\frac{1}{k_{1}}+\frac{1}{k_{1}}$
$\therefore k_{12}=\frac{k_{1} k_{2}}{k_{1}+k_{2}}$
$k_{123}=k_{12}+k_{3}=\frac{k_{1} k_{2}}{k_{1}+k_{2}}+k_{3}=\frac{k_{1} k_{2}+k_{1} k_{3}+k_{2} k_{3}}{k_{1}+k_{2}}$
$k_{e q}=k_{123}+k_{4}=\frac{k_{1} k_{2}+k_{1} k_{3}+k_{2} k_{3}}{k_{1}+k_{2}}+k_{4}=\frac{k_{1} k_{2}+k_{1} k_{3}+k_{2} k_{3}+k_{1} k_{4}+k_{2} k_{4}}{k_{1}+k_{2}}$
$\because \omega_{n}=\sqrt{\frac{k_{\text {eq }}}{m}}$
$\therefore \omega_{n}=\sqrt{\frac{k_{1} k_{2}+k_{1} k_{3}+k_{2} k_{3}+k_{1} k_{4}+k_{2} k_{4}}{m\left(k_{1}+k_{2}\right)}}$
3) Derive the equation of motion of the system shown in Figure 3, using the following methods: (a) Newton's second law of motion, (b) D'Alembert's principle, (c) principle of virtual work, and (d) principle of conservation of energy.

Figure 3
Sol.:
a) Newton's Second Law of motion:

$$
\begin{aligned}
& F(t)=-k_{1} x-k_{2} x=m \ddot{x} \\
& m \ddot{x}+\left(k_{1}+k_{2}\right) x=0
\end{aligned}
$$

b) D'Alembert Principle:

$$
\begin{aligned}
& F(t)-m \ddot{x}=0 \\
& \left(k_{1}+k_{2}\right) x-(-m \ddot{x})=0 \\
& m \ddot{x}+\left(k_{1}+k_{2}\right) x=0
\end{aligned}
$$

c) Principle of Virtual Work:

When mass m is given a virtual displacement δx
Virtual work done by the spring force $=-\left(k_{1}+k_{2}\right) x \delta x$
Virtual work done by the inertia force $=-(m \ddot{x}) \delta x$
The total virtual work done by all forces $=0$

$$
\begin{aligned}
& -m \ddot{x} \delta x-\left(k_{1}+k_{2}\right) x \delta=0 \\
& m \ddot{x}+\left(k_{1}+k_{2}\right) x=0
\end{aligned}
$$

d)

$$
\begin{aligned}
& T=\frac{1}{2} m \dot{x}^{2} \\
& U=\frac{1}{2}\left(k_{1}+k_{2}\right) x^{2} \\
& T+U=\text { Const. } \\
& \frac{d}{d t}(T+U)=0 \\
& m \ddot{x}+\left(k_{1}+k_{2}\right) x=0
\end{aligned}
$$

4) Draw the free-body diagram and derive the equation of motion using Newton's second law of motion for the system shown in Figure 4.

Figure 4

Sol.:

Consider the springs connected to the pulleys (by rope) to be in series. Then: $\frac{1}{k_{\text {eq }}}=\frac{1}{k}+\frac{1}{5 k}$
$\therefore k_{\text {eq }}=\frac{5}{6} k$
Let the displacement of mass m be x.
Then the extension of the rope (Spring Connected to the pulleys) $=2 x$.
From the free body diagram, the equation of motion m becomes:

$$
\begin{aligned}
& m \ddot{x}+2 k x+k_{\mathrm{eq}}=0 \\
& \therefore m \ddot{x}+\frac{11}{3} k x=0
\end{aligned}
$$

4) Draw the free-body diagram and derive the equation of motion using Newton's second law of motion for the system shown in Figure 5.

Figure 5
Sol.:

Equation of Motions:

$$
\begin{align*}
& \text { Mass } \mathrm{m}: m g-T=m \ddot{x} \tag{1}\\
& \text { Pulley } J_{0}: J_{0} \theta=\operatorname{Tr}-k 4 r\left(\theta-\theta_{0}\right) 4 r \tag{2}
\end{align*}
$$

Where θ_{0} is the angular deflection of the pulley under the weight, mg, given by:

$$
\begin{equation*}
m g r=k\left(4 r \theta_{0}\right) 4 r \quad \text { or } \quad \theta_{0}=\frac{m g}{16 r k} \tag{3}
\end{equation*}
$$

Subs. Eqs. (1) and (3) into (2):

$$
\begin{equation*}
J_{0} \ddot{\theta}=(m g-m \ddot{x}) r-k 16 r^{2}\left(\theta+\frac{m g}{16 r k}\right) \tag{4}
\end{equation*}
$$

Using $x=r \theta$ and $\ddot{x}=r \ddot{\theta}$, Eq. (4) becomes:

$$
\left.J_{0}+m r^{2}\right) \ddot{\theta}+\left(16 r^{2} k\right) \theta=0
$$

Alternative Method (Conservation of Energies):

$$
\begin{aligned}
\text { Kinetic Energy } & =T=T_{\text {mass }}+T_{\text {pulley }} \\
& =\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} J_{0} \dot{\theta}^{2}=\frac{1}{2}\left(m r^{2}+J_{0}\right) \dot{\theta}^{2} \\
\text { Potential Energy } & =U=\frac{1}{2} k x_{s}{ }^{2} \\
& =\frac{1}{2} k(4 r \theta)^{2} \\
& =\frac{1}{2} k\left(16 r^{2}\right) \theta^{2}
\end{aligned}
$$

Using $\frac{d}{d t}(T+U)=0$, gives:
$\left(m r^{2}+J_{0}\right) \ddot{\theta}+\left(16 r^{2} k\right) \theta=0$
6) Derive the equation of motion of the system shown in Figure 6, using the following methods:
(a) Newton's second law of motion,
(b) D' Alembert's principle.
(c) Principle of virtual work.

Figure 6
Sol.:
let θ be measured from static equilibrium position so that the force of gravity need not be considered.
a) Newton's second law of motion
$J_{0} \ddot{\theta}=-3 k\left(\theta \frac{l}{4}\right) \frac{l}{4}-k\left(\theta \frac{3 l}{4}\right)\left(\frac{3 l}{4}\right)$
$J_{0} \ddot{\theta}+\frac{3}{4} k l^{2} \theta=0$
b) D'Alembert's Principle

$$
\begin{aligned}
& M(t)-J_{0} \ddot{\theta}=0 \\
& -3 k\left(\theta \frac{l}{4}\right) \frac{l}{4}-k\left(\theta \frac{3 l}{4}\right)\left(\frac{3 l}{4}\right)-J_{0} \ddot{\theta}=0 \\
& J_{0} \ddot{\theta}+\frac{3}{4} k l^{2} \theta=0
\end{aligned}
$$

c) Principle of Virtual Work
virtual work done by the spring force:

$$
\delta W_{s}=-3 k\left(\theta \frac{l}{4}\right)\left(\frac{l}{4} \delta \theta\right)-k\left(\theta \frac{3 l}{4}\right)\left(\frac{3 l}{4} \delta \theta\right)
$$

the virtual work done by the moment of inertia :

$$
\delta W_{m}=-\left(J_{0} \ddot{\theta}\right) \delta \theta
$$

Setting the total of virtual work done by all forces and moments equal to zero, we obtain:

$$
J_{0} \ddot{\theta}+\frac{3}{4} k l^{2} \theta=0
$$

