بسم الله الرحمن الرحيم

King Abdulaziz University	
Engineering College	
Department of MENG	
4 th Homework Assignment	

Mechanical Vibrations MENG 470 Spring 1425 H Due Wed.: 29/1/1425 H

1) Consider the ODE of motion of 1-DOF system under damped free vibration:

 $\ddot{x} + 2\zeta \omega_n \dot{x} + \omega_n^2 x = 0$, x(0) = 1 $\dot{x}(0) = 1$

- a. For $\omega_n = 2$, $\zeta = 0.1$ Plot the solution for 0 < t < 10. Label the coordinates
- b. For $\omega_n = 2$, plot the solution (0 < t < 10), for $\zeta = 0.1$, 0.4, and 0.99 on the same figure.

Label coordinates and denote each curve by its value of ζ .

- c. Repeat (b) for $\zeta = 0.1, 0.4, 0.99, 2, \text{ and } 5$.
- 2) A vibrating system consisting of a mass of 2.267 kg and a spring of stiffness 17.5 N/cm is viscously damped such that the ratio of any two consecutive amplitudes is 1.00 and 0.98. Determine:
 - a. The natural frequency of the damped system.
 - b. The logarithmic decrement.
 - c. The damping factor
 - d. The damping coefficient.

3) A vibrating system consists of a mass of 4.534 kg, a spring of stiffness 35.0 N/cm, and a dashpot with a damping coefficient of 0.1243 N/cm/s. Find:

- a. The damping factor.
- b. The logarithmic decrement.
- c. The ratio of any two consecutive amplitudes.

4) A vibrating system has the following constants: m = 17.5 kg, k = 70.0 N/cm, and c = 0.70 N/cm/s. Determine:

- a. The damping factor.
- b. The natural frequency of damped oscillation.
- c. The logarithmic decrement.
- d. The ratio of any two consecutive amplitudes.

5) Set up the differential equation of motion for the system shown in Figure 1. Determine the expression for:

- a. The critical damping coefficient
- b. The natural frequency of damped oscillation.

Figure 1

6) Write the differential equation of motion for the system shown in Figure 2 and determine the natural frequency of damped oscillation and the critical damping coefficient.

Figure 2

7) A spring-mass system with viscous damping is displaced from the equilibrium position and released. If the amplitude diminished by 5% each cycle, what fraction of the critical damping does the system have?

8) A rigid Uniform bar of mass *m* and length *l* is pinned at *O* and supported by a spring and viscous damper, as sown in Figure 3. Measuring θ from the static equilibrium position, Determine:

a) The equation for small θ (the moment of inertia of the bar about *O* is $ml^2/3$).

- b) The equation for the undamped natural frequency.
- c) The expression for critical damping. Use Virtual Work and D'Alembert's Principles.

Figure 3