بسم الله الرحمن الرحيم

King Abdulaziz University Engineering College Department of Production and Mechanical System Design

MENG 470 Mechanical Vibrations

Final Exam Closed-book Exam Monday: 30/6/1425 H Time Allowed: 120 mins

Name:	ID No.:
-------	---------

	ı	
Question 1		25
Question 2		40
Question 3		35
TOTAL		100

(

Instructions

- 1. This is a closed book and closed notes Opportunity to Shine
- 2. Show all work for partial credit.
- 3. Assemble your work for each problem in logical order.
- 4. Justify your conclusion. I cannot read minds.

- Q1. Indicate whether each of the following statements is **true** or **false**:
 - 1. The amplitude of an undamped system will not change with time.
 - 2. A system vibrating in air can be considered a damped system.
 - 3. The equation of motion of a single degree of freedom system will be the same whether the mass moves in a horizontal plane or an inclined plane.
 - 4. When a mass vibrates in a vertical direction, its weight can always be ignored in deriving the equation of motion.
 - 5. The principle of conservation of energy can be used to derive the equation of motion of both damped and undamped systems.
 - 6. The damped frequency can in some cases be larger than the undamped natural frequency of the system.
 - 7. The damped frequency can be zero in some cases.
 - 8. The natural frequency of vibration of a torsional system is given by $\sqrt{k_T/J}$, where k_T and J denote the torsional spring constant and the polar mass moment of inertia, respectively.
 - 9. The undamped natural frequency of a system is given by $\sqrt{g/\delta_{st}}$ where δ_{st} is the static deflection of the mass.
 - 10. For an undamped system, the velocity leads the displacement by $\pi/2$.
 - 11. The motion diminishes to zero in both underdamped and overdamped cases.
 - 12. The logarithmic decrement can be used to find the damping ratio.
 - 13. In torsional vibration, the displacement is measured in terms of linear coordinate
 - 14. The phase angle of the response depends on the system parameter m, c, k, and ω .
 - 15. During beating, the amplitude of the response builds up and then diminishes in a regular pattern.
 - 16. The *O*-factor can be used to estimate the damping in a system.
 - 17. The amplitude ratio attains its maximum value at resonance in the case of viscous damping.
 - 18. Damping reduces the amplitude ratio for all values of the forcing frequency.
 - 19. The unbalance in a rotating machine causes vibration.
 - 20. The normal modes can also be called principal modes.
 - 21. The generalized coordinates are linearly dependent.
 - 22. Principal coordinates can be considered as generalized coordinates.
 - 23. The vibration of a system depends on the coordinate system.
 - 24. The nature of coupling depends in the coordinate system.
 - 25. The magnification factor is the ratio of maximum amplitude and static deflection.
 - 26. The response will be harmonic if excitation is harmonic.

- 27. The principal coordinates avoid both static and dynamic coupling.
- 28. The use of principal coordinates helps in finding the response of the system.
- 29. The mass, stiffness, and damping matrices of a two degree of freedom system are symmetric.
- 30. The characteristics of a two degree of freedom system are used in the design of dynamic vibration absorber.
- 31. A semidefinite system cannot have nonzero natural frequencies.
- 32. During free vibration, different degrees of freedom oscillate with different amplitudes.
- 33. The modal vectors of a system denote the normal modes of vibration.
- 34. The vibration of a system under external forces is called damped vibration.
- 35. When a two degree of freedom system is subjected to a harmonic force, the system vibrates at the frequency of applied force.
- 36. When the forcing frequency is equal to one of the natural frequencies of the system, a phenomenon known as *beating* occurs.
- 37. For a damped multidegree of freedom system, all the eigenvalues can be complex.
- 38. The amplitudes and phase angles are determined from the boundary conditions of the system.
- 39. A semi definite system has at least one rigid body motion.
- 40. The elastic coupling is also known as dynamic coupling while the inertia coupling is also known as static coupling.
- 41. The equations of motion of a system will be coupled when principal coordinates are used.
- 42. The vibration of a system under initial conditions only is called forced vibration.
- 43. The number of degrees of freedom of a vibrating system depends only on number of masses.
- 44. The equations of motion of a two degree of freedom system are in general coupled.
- 45. The stiffness matrix of a system is always symmetric and positive definite.
- 46. For a multidegree of freedom system, one equation of motion can be written for each degree of freedom.
- 47. Lagrange's equation cannot be used to derive the equations of motion of a multidegree of freedom system.
- 48. The mass, stiffness, and damping matrices of a multidegree of freedom are always symmetric.
- 49. A multidegree of freedom system can have six of the natural frequencies equal to zero
- 50. The mass matrix of a system is always symmetric and positive definite.

Answers:

1. 2.	True O O	Flase O O
 3. 4. 	O	O
4.	0 0 0	O O O
5. 6.	0	0
6. 7.	0	0
8.	0	O
9.	O	O
10.	O	O
11.	0	0
12.	0	0
13. 14.	0 0 0	O O O
15.	Ö	Ö
16.	O	O
17.	O	O
18.	0	0
19.	O O	O O
20. 21.	0	O
2.2		Ö
23.	0 0 0	0 0 0
24.25.	O	O
25.	0	0
26.27.	0	0
28.	O O	0 0
29	Ö	Ö
30.	O	O
30. 31. 32.	O	0
32.	0 0 0	O O O
33. 34.	0	0
35.	Ö	O
36.	O	O
37.	O	O
38.	0	0
39.	O O	O O
40. 41.	0	0
42.	Ö	Ö
43.	O	O
44.	O	O
45.	0	0
46. 47.	O O	O O
47. 48.	0	0
49.	0	Ö
50.	Ö	Ö

- Q2. Consider the system shown in Figure 1 where $m_1 = 30 \text{ kg}$, $m_2 = 2 \text{ kg}$, k = 15 N/m, l=2m, $f(t) = 10 \sin(5t) \text{ N}$.
 - (a) What's the degree of the system?
 - (b) Write the equation of motion of the system in matrix form.
 - (c) Is the system statically or dynamically coupled or both.
 - (d) Find the natural frequencies and corresponding mode shapes.
 - (e) Calculate the normalized eigenvectors of the system.
 - (f) Write down the matrix form.
 - (g) Decouple the coupled equations using modal transformation.
 - (h) Recover the physical degrees of freedom from the modal degree of freedom.

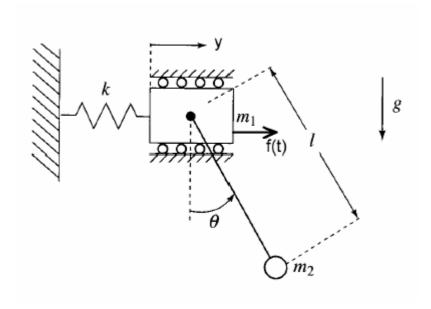


Figure 1

Q3. Consider a cable shown in Figure 2 that has one end fixed and the other end free to slide along a smooth vertical guide. The free end cannot support a transverse force so that we have:

$$\frac{\partial \omega(L,t)}{\partial x} = 0$$

The cable length L=100m is made out of steel with a uniform density ρ =7.8×10 3 kg/m 3 , and constant cross sectional area A=7.854×10 $^{-5}$ m 2 ; and it is under tension of T=10,000 N.

Calculate the natural frequencies and mode shape of the cable. Plot the first four made shapes (Normalized the mode shapes so that its maximum amplitude is one).

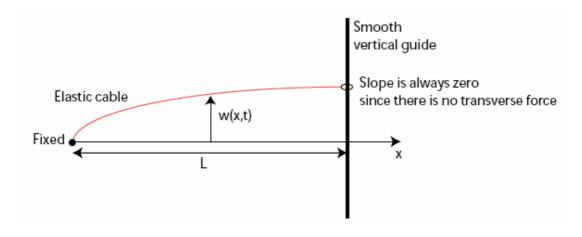


Figure 2