بسم الله الرحمن الرحيم

King Abdulaziz University Engineering College Department of Production and Mechanical System Design

MENG 470 Mechanical Vibrations

Second Exam Closed-book Exam Monday: 28/3/1425 H Time Allowed: 90 mins

|--|

Question 1	7
Question 2	8
TOTAL	15

Instructions

- 1. There are totally 2 problems in this exam.
- 2. This is a closed book and closed notes Opportunity to Shine
- 3. Show all work for partial credit.
- 4. Assemble your work for each problem in logical order.
- 5. Justify your conclusion. I cannot read minds.

بسم الله الرحمن الرحيم

Mechanical Vibrations MENG 470 Second Exam Closed Book Exam Time: 1 ½ Hour Monday: 28/3/1425 H

- Q1. For the multi-degree-of-freedom system shown in the Figure 1:
 - a) What is the degree-of-freedom for this system?
 - b) Determine the deferential equations governing the motion using *Lagrange's* equations.
 - c) Determine the deferential equations governing the motion using *Newtonian* approach.
 - d) Is your system of equations dynamically coupled, statically coupled, or both?

Figure 1

- Q2. Two identical cylinders, each of radius *r* and mass *m*, are connected by a spring with constant *k* and roll without slipping relative to ground as shown in Figure 2. If the mass moment of inertia about the mass center of each cylinder is $J = \frac{1}{2}mr^2$.
 - a) Derive the equations of motion of the system
 - b) Determine the natural frequencies of vibration.
 - c) Determine the system mode shapes
 - d) Calculate the *modal* matrix of the system.
 - e) Express the equations of motion in *modal* domain as a set of uncoupled differential equations of second order.
 - f) Using the modal analysis, find the free vibration response of the system (i.e. $x_1(t)$ and $x_2(t)$). Assume the following data: m=10 kg, k=300 N/m, r = 10 cm

$$\begin{cases} x_1(0) \\ x_2(0) \end{cases} = \begin{cases} 1 \\ 0 \end{cases}, \quad \begin{cases} \dot{x}_1(0) \\ \dot{x}_2(0) \end{cases} = \begin{cases} 0 \\ 0 \end{cases}$$

Figure 2

أتمنى لك من أعماق القلب أداء ر ائعا فأنت أهل لذلك

د. سعيد بن أحمد عسيري