بسم الله الرحمن الرحيم

King Abdulaziz University	Mechanical Vibrations
Engineering College	MENG 470
Department of MENG	Spring 1425 H
8 th Homework Assignment	Due Sat.: 12/3/1425 H

Q1. Use Lagrange's equation to find the equation of motion for the system shown in Figure 1. The variables $y_1(t)$ and $y_2(t)$ represent known positions as a function of time so x is the only unknown quantity. Let $k_1 = 50$ N/m, $k_2=20$ N/m, c = 2 N-s/m, and m=10 kg.

Figure 1

- Q2. For the system shown in Figure 2:
 - 1. Use Newtonian approach to find the equation of motion
 - 2. Use Lagrange's equation to find the equation of motion
 - 3. Find the natural frequencies and mode shapes.

Figure 2

Q3. Use Lagrange's equation to find the equation of motion for the pendulum shown. Here y(t) is known function of time. Use small angle theory to linearize the EOM in terms of θ .

Figure 3

- Q4. For the system shown in Figure 4:
 - a) Use Newtonian approach to find the equation of motion
 - b) Use Lagrange's equation to find the equation of motion
 - c) Find the natural frequencies and mode shapes.
 - d) If c=0, model the system as SDOF systems using modal transformation.

Figure 4